Publications

Results 96701–96725 of 99,299

Search results

Jump to search filters

Optically controlled current filamentation in GaAs photoconductive semiconductor switches

IEEE International Pulsed Power Conference - Digest of Technical Papers

Zutavern, Fred J.

The use of focused laser beams and fiber optics to control the location and density of current filaments in GaAs photoconductive semiconductor switches (PCSS) is described in this paper. An intensified CCD camera is used to monitor the infrared photoluminescence of the filaments during fast initiation of high gain switching for several sizes of lateral GaAs PCSS (e.g. 0.5×5, 1×5, 2.5×5, 2×30, and 15×20 mm2). The switches are triggered with either a focused, mode-locked, Nd:YAG laser (532 and 1064 nm) or fiber-optically coupled semiconductor laser diodes (approximately 900 nm). The dependencies of the size, location, and density of the current filaments on the optical trigger, switch voltage, and switch current will be discussed. The impact of optically controlled current filaments on device design and lifetime is emphasized. Electro-optical switching amplification is demonstrated using the high gain switching mode of GaAs (lock-on). A single semiconductor laser diode is used to trigger a small GaAs PCSS. This PCSS is used to drive a 15-element laser diode array. Both electrical and optical pulse compression, sharpening, and amplification are achieved. Estimates for electrical and optical power gains are 8000 and 750 respectively.

More Details

Coupling of smooth particle hydrodynamics with PRONTO

American Society of Mechanical Engineers, Applied Mechanics Division, AMD

Attaway, Stephen W.

A gridless numerical technique called smooth particle hydrodynamics (SPH) has been coupled the transient dynamics finite element code, PRONTO. In this paper, a new weighted residual derivation for the SPH method will be presented, and the methods used to embed SPH within PRONTO will be outlined. Example SPH-PRONTO calculations will also be presented. Smooth particle hydrodynamics is a gridless Lagrangian technique. Requiring no mesh, SPH has the potential to model material fracture, large shear flows, and penetration. SPH computes the strain rate and the stress divergence based on the nearest neighbors of a particle, which are determined using an efficient particle sorting technique. Embedding the SPH method within PRONTO allows part of the problem to be modeled with quadrilateral finite elements while other parts are modeled with the gridless SPH method. SPH elements are coupled to the quadrilateral elements through a contact like algorithm.

More Details

Measuring liquid properties with smooth- and textured-surface resonators

Proceedings of the Annual Frequency Control Symposium

Martin, Steve W.

The response of thickness shear mode (TSM) resonators in liquids is examined. Smooth-surface devices, which viscously entrain a layer of contacting liquid, respond to the product of liquid density and viscosity. Textured-surface devices, which also trap liquid in surface features, exhibit an additional response that depends on liquid density alone. Combining smooth and textured resonators in a monolithic sensor allows simultaneous measurement of liquid density and viscosity.

More Details

Estimations of the extent of migration of surficially applied water for various surface conditions near the potential repository perimeter; Yucca Mountain Site Characterization Project

Sobolik, Steven

The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to support the design of site characterization activities so to have minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. Two examples of site characterization activities are the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and surface-based testing activities, which may require borehole drilling, excavation of test pits, and road watering for dust control. The information in this report pertains to two-dimensional numerical calculations modeling the movement of surficially applied water and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing recommendations for two Yucca Mountain Site Characterization Project documents: Appendix I of the Exploratory Studies Facility Design Requirements document, and the Surface-Based Testing Field Requirements Document.

More Details

Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility; Yucca Mountain Site Characterization Project

Dunn, E.; Sobolik, S.R.

The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area.

More Details

Synthesis and characterization of novel spiro penta- and hexacoordinate anionic polysiliconate and polygermylate ionomers derived from the condensation of ({plus_minus}) 5,5{prime}, 6,6{prime} - Tetrahydroxy-1,1{prime} - spiro-bis(Indane) with trialkoxysilanes, tetraalkoxysilanes, and trialkoxygermanes

Loy, Douglas A.

Synthesis of hybrid organic-inorganic materials with ionic functionality within the polymer backbone has been achieved. A new family of hypervalent spiro anionic polysiliconates and polygermylates has been prepared. These materials were shown to be thermally stable to moderate temperatures and are completely air and moisture stable. Analysis by solution and solid state NMR verified the presence of the hypervalent functionality. We are currently examining the effect that alteration of the condensing reagent and/or the counterion may have on bulk properties of the ionomeric material.

More Details

Concepts to measure flux and temperature for external central receivers

Pacheco, James E.

Three concepts to measure incident flux (1) relative, real-time power measurement, (2) flux mapping and incident power measurement, and (3) real-time flux mapping) and two concepts to measure receiver surface temperatures low and high resolution temperature measurements) on an external central receiver are discussed along with the potential and shortcomings of these concepts to make the desired measurements and the uncertainties associated with the measurements caused by atmospheric and surface property variations. These concepts can aid in the operation and evaluation of the receiver and plant. Tests have shown that the incident flux distribution on a surface can be mapped out using a fixed, narrow white target and a CCD camera system by recording the images of the beam as it is passed over the target and by building a composite image. Tests with the infrared cameras have shown they are extremely valuable tools in determining temperature profiles during startup of the receiver and throughout operation. This paper describes each concept in detail along with the status of testing to determine the feasibility of these concepts.

More Details

Experimental determination of the Cu-In-Pb ternary phase diagram

Romig Jr., Alton D.

Use of lead-indium solders in microelectronics packaging has increased over the last decade. Increased usage is due to improved properties, such as greater thermo-mechanical fatigue resistance, lower intermetallic formation rates with base metallizations, such as copper, and lower reflow temperatures. However, search of literature reveals no comprehensive studies on phase equilibrium relations between copper metal and lead-indium solder. Our effort involves a combination of experimental data acquisition and computer modeling to obtain the Cu-In-Pb ternary phase diagram. Isotherms and isopleths of interest at low temperatures are achieved by means of differential scanning calorimetry and electron probe microanalysis. Thermodynamic models of these sections served as a guide for efficient experimentation.

More Details

Charge trapping and breakdown in N{sub 2}O oxides

Fleetwood, Daniel M.

Nitrided gate oxides have been fabricated by furnace oxidation in N{sub 2}O with and without prior oxidation in O{sub 2}. SIMS nitrogen profiles show a sharp peak at the Si-insulator interface for both processes. Improved breakdown characteristics and reduced oxide damage after irradiation and charge injection are obtained.

More Details

Effects of oxide charge and surface recombination velocity on the excess base current of BJTs

Fleetwood, Daniel M.

The role of net positive oxide trapped charge and surface recombination velocity on excess base current in BJTs is identified. The effects of the two types of damage can be detected by plotting the excess base current versus base-emitter voltage. Differences and similarities between ionizing-radiation-induced and hot electron-induced degradation are discussed.

More Details

The light ion LMF and its relevance to IFE

Olson, Richard E.

The inertial confinement fusion (ICF) program at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for ICF defense and energy applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The relevance of LMF technology to eventual inertial fusion energy (IFE) applications is assessed via a comparison of LMF technologies with those projected in the Light Ion Beam Reactor Assessment (LIBRA) conceptual reactor design study.

More Details

Evaluation of second-generation central receiver technologies

Kolb, Gregory J.

This paper summarizes the results of a study performed by the US and Germany to assess the technical and economic potential of central receiver power plants and to identify the necessary research and development (R&D) activities required to reach demonstration and commercialization. Second generation power plant designs, employing molten-salt and volumetric-air receivers, were assessed at the size of 30 and 100 MWe. The study developed a common guideline and used data from previous system tests and studies. The levelized-energy costs for the second generation plants were estimated and found to be competitive with costs from fossil-fueled power plants. Potential for further cost reductions exists if technical improvements can be introduced successfully in the long term. Additionally, the study presents results of plant reliability and uncertainty analyses. Mid- and long-term technical potentials are described, as well as recommendations for the R&D activities needed to reach the goal of large-scale commercialization. The results of this study have already helped direct research in the US and Europe. For example, the favorable potential for these technologies has led to the Solar Two molten-salt project in the US and the TSA volumetric receiver test in Spain. In addition, early analysis conducted within this study indicated that an advanced thermal storage medium was necessary to achieve favorable economics for the air plant. This led to the design of the thermal storage system currently being tested in Spain. In summary, each of the investigated receiver technologies has mid- and long-term potential for improving plant performance and reducing capital and energy costs (resulting in less than 10 cts/kWh given excellent insolation conditions) in an environmentally safe way and largely independent of fossil-fuel prices.

More Details

Molecular beam mass spectrometry studies of the chemical vapor deposition of diamond

Coltrin, Michael E.

We have developed a novel molecular beam mass spectrometry technique that can quantitatively analyze the gas-phase composition in a CVD reactor. The technique simultaneously monitors a wide variety of radical and stable species, and their concentrations can be determined with sensitivities approaching 1 ppM. Measurements performed in a diamond deposition system have given us keen insights into the important phenomena that affect the growth environment. This paper first discusses the primary gas sampling design issues. In the second part, the details of the experimental results and their implications will be described.

More Details

Issues for conversion coating of aluminum alloys with hydrotalcite

Drewien, Celeste A.

Hydrotalcite coatings on aluminum alloys are being developed for corrosion protection of aluminum in aggressive saline environments. Coating bath composition, surface pretreatment, and alloying elements in aluminum all influence the performance of these coatings during salt spray testing. The coating bath, comprised of lithium carbonate, requires aging by dissolution of aluminum into the bath in order to grow corrosion resistant coatings. Coatings formed in non- aged baths do not perform well in salt spray testing. The alloying elements in aluminum alloys, especially copper, influence the coating growth and formation leading to thin coatings. The effect of the alloy elements is to limit the supply of aluminum to the coating/electrolyte interface and hinder growth of hydrotalcite upon aluminum alloys.

More Details

Adsorption and desorption studies of cesium on sapphire surfaces

Zavadil, Kevin R.

Adsorption/desorption were studied using combined surface analytical techniques. An approximate initial sticking coefficient for Cs on sapphire was measured using reflection mass spectrometry and found to be 0.9. Thermal Desorption Mass Spectrometry (TDMS) and Auger Electron Spectroscopy (AES) were used to verify that a significant decrease in sticking coefficient occurs as the Cs coverage reaches a critical submonolayer value. TDMS analysis demonstrates that Cs is stabilized on a clean sapphire surface at temperatures (1200 K) in excess of the temperatures experienced by sapphire in a TOPAZ-2 thermionic fuel element (TFE). Surface contaminants on sapphire can enhance Cs adsorption relative to the clean surface. C contamination eliminates the high temperature state of Cs desorption found on clean sapphire but shifts the bulk of the C desorption from 400 to 620 K. Surface C is a difficult contaminant to remove from sapphire, requiring annealing above 1400 K. Whether Cs is stabilized on sapphire in a TFE environment will most likely depend on relation between surface contamination and surface structure.

More Details

Toxicity evaluation and hazard review Cold Smoke

Archuleta, Melecita M.

Cold Smoke is a dense white smoke produced by the reaction of titanium tetrachloride and aqueous ammonia aerosols. Early studies on the toxicity of this nonpyrotechnically generated smoke indicated that the smoke itself is essentially non-toxic (i.e. exhibits to systemic toxicity or organ damage due to exposure) under normal deployment conditions. The purpose of this evaluation was to review and summarize the recent literature data available on the toxicity of Cold Smoke, its chemical constituents, and its starting materials.

More Details

Smart Document System (SDS) used in managing DOE order`s with electronic Engineering Procedures

Graham, R.; Robbins, D.

The Microsoft (MS) Windows product is widely available for PC`s. There exists many thousands of them at Sandia. All of the MS applications in Windows have a Help file. This help file informs the user ``how to`` use and run that application. It is an ``on-line`` manual. The ``Help Compiler`` was obtained from Microsoft. Use of this compiler enables one to insert text in a form the MS ``Help Engine`` recognizes. This means all of the features of the Help file: Hypertext (hot links), browsing, searching, indexing, bookmarks, annotation, are available for your text. This turns a document into a ``Smart Document.`` The use of this Smart Document System (SDS) for Engineering Procedures (EPs) is described.

More Details

Manufacturing technology. A Sandia Technology Bulletin

Leonard, J.; Doran, L.; Floyd, H.L.; Goetsch, B.; Parrott, L.

This item is a copy of the Dec., 1993 issue of Manufacturing Technology, a Sandia Technology Bulletin. It has information on a number of different projects being conducted by Sandia in the general area of manufacturing sciences. Topics addressed include the following: center for information-technology manufacturing gears up, luctrative flat-panel display market targeted; researchers make copper stick to teflon, patterned adhesion may provide ideal conductor/substrate combination for microcircuits; contact algorithm enhances simulation of manufacturing processes, algorithm efficiently handles previously difficult analyses of punching and cutting operations; national machine tool partnership rolls into action, national laboratories share technology to boost US machine-tool industry; closed-loop MAST system eyes robotic manufacturing, fast, accurate, low-cost sensor demonstrated on furnace brazing.

More Details

Sandia`s research network for Supercomputing `93: A demonstration of advanced technologies for building high-performance networks

Gossage, S.A.; Vahle, M.O.

Supercomputing `93, a high-performance computing and communications conference, was held November 15th through 19th, 1993 in Portland, Oregon. For the past two years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1993 conference, the results of Sandia`s efforts in exploring and utilizing Asynchronous Transfer Mode (ATM) and Synchronous Optical Network (SONET) technologies were vividly demonstrated by building and operating three distinct networks. The networks encompassed a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second, an ATM network running on a SONET circuit at the Optical Carrier (OC) rate of 155.52 megabits per second, and a High Performance Parallel Interface (HIPPI) network running over a 622.08 megabits per second SONET circuit. The SMDS and ATM networks extended from Albuquerque, New Mexico to the showroom floor, while the HIPPI/SONET network extended from Beaverton, Oregon to the showroom floor. This paper documents and describes these networks.

More Details

Impact analysis of Minuteman III Payload Transporter Type III

Stirbis, P.P.

An analysis of the impact of the Minuteman III Payload Transporter Type III into a nonyielding target at 46 m.p.h. and 30 m.p.h., and into a yielding target at 46 m.p.h. is presented. The analysis considers the structural response of the tiedown system which secures the Minuteman III re-entry system to the floor of the payload transporter. A finite element model of the re-entry system, its tiedown system, which includes tie-rods and shear pins, and the pallet plate which is attached to the transporter floating plate, was constructed. Because accelerations of the payload transporter are not known, acceleration data from one-quarter scale testing of the Safe Secure Trailer was used to investigate the response of the tiedown system. These accelerations were applied to the pallet plate. The ABAQUS computer code was used to predict the forces in the members of the tiedown system.

More Details

SAFSIM theory manual: A computer program for the engineering simulation of flow systems

Dobranich, Dean

SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.

More Details
Results 96701–96725 of 99,299
Results 96701–96725 of 99,299