Publications

Results 96476–96500 of 99,299

Search results

Jump to search filters

The effect of sliding velocity on the mechanical response of an artificial joint in Topopah Spring Member tuff; Yucca Mountain Site Characterization Project

Olsson, William A.

A smooth artificial joint in Topopah Spring Member tuff was sheared at constant normal stress at velocities from 0 to 100 {mu}m/s to determine the velocity-dependence of shear strength. Two different initial conditions were used: (1) unprimed -- the joint had been shear stress-free since last application of normal stress, and before renewed shear loading; and (2) primed -- the joint had undergone a slip history after application of normal stress, but before the current shear loading. Observed steady-state rate effects were found to be about 3 times lager than for some other silicate rocks. These different initial conditions affected the character of the stress-slip curve immediately after the onset of slip. Priming the joint causes a peak in the stress-slip response followed by a transient decay to the steady-state stress, i.e., slip weakening. Slide-hold-slide tests exhibit time-dependent strengthening. When the joint was subjected to constant shear stress, no slip was observed; that is, joint creep did not occur. One set of rate data was collected from a surface submerged in tap water, the friction was higher for this surface, but the rate sensitivity was the same as that for surfaces tested in the air-dry condition.

More Details

Paleoclimate validation of a numerical climate model

Schelling, F.J.; Church, H.W.; Zak, B.D.; Thompson, S.L.

An analysis planned to validate regional climate model results for a past climate state at Yucca Mountain, Nevada, against paleoclimate evidence for the period is described. This analysis, which will use the GENESIS model of global climate nested with the RegCM2 regional climate model, is part of a larger study for DOE`s Yucca Mountain Site Characterization Project that is evaluating the impacts of long term future climate change on performance of the potential high level nuclear waste repository at Yucca Mountain. The planned analysis and anticipated results are presented.

More Details

An experimental comparison of laboratory techniques in determining bulk properties of tuffaceous rocks; Yucca Mountain Site Characterization Project

Price, Ronald H.

Samples of tuffaceous rock were studied as part of the site characterization for a potential nuclear waste repository at Yucca Mountain in southern Nevada. These efforts were scoping in nature, and their results, along with those of other investigations, are being used to develop suitable procedures for determining bulk properties of tuffaceous rock in support of thermal and mechanical properties evaluations. Comparisons were made between various sample preparation, handling, and measurement techniques for both zeolitized and nonzeolitized tuff in order to assess their effects on bulk property determinations. Laboratory tests included extensive drying regimes to evaluate dehydration behavior, the acquisition of data derived from both gas and water pycnometers to compare their suitability in determining grain densities, a comparison of particle size effects, and a set of experiments to evaluate whole core saturation methods. The results affirm the added complexity of these types of measurements where there is a zeolite component in the sample mineralogy. Absolute values for the bulk properties of zeolitized tuff are immeasurable due to the complex nature of their dehydration behavior. However, the results of the techniques that were investigated provide a basis for the development of preferred, consistent methods for determining the grain density, dry and saturated bulk densities, and porosity of tuffaceous rock, including zeolitic tuff in support of thermal and mechanical properties evaluations.

More Details

Total-system performance assessment for Yucca Mountain - SNL second iteration (TSPA-1993); Volume 1

Wilson, Michael L.

Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). These analyses estimate the future behavior of a potential repository for high-level nuclear waste at the Yucca Mountain, Nevada, site under consideration by the Department of Energy. TSPA-93 builds upon previous efforts by emphasizing YMP concerns relating to site characterization, design, and regulatory compliance. Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. Hydrologic parameters and parameter probability distributions have been derived from available site data. Possible future climate changes are modeled by considering two separate groundwater infiltration conditions: {open_quotes}wet{close_quotes} with a mean flux of 10 mm/yr, and {open_quotes}dry{close_quotes} with a mean flux of 0.5 mm/yr. Two alternative waste-package designs and two alternative repository areal thermal power densities are investigated. One waste package is a thin-wall container emplaced in a vertical borehole, and the second is a container designed with corrosion-resistant and corrosion-allowance walls emplaced horizontally in the drift. Thermal power loadings of 57 kW/acre (the loading specified in the original repository conceptual design) and 114 kW/acre (a loading chosen to investigate effects of a {open_quotes}hot repository{close_quotes}) are considered. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone.

More Details

A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

Fernandez, Joseph A.

This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

More Details

Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

Lutz, J.D.

Sandia National Laboratories (SNL) is tasked to support The Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials. SNL developed a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. New Mexico Bureau of Mines and Mineral Resources assisted SNL in investigation of size-reduction and separation technologies.

More Details

A multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER)

Klarer, Paul R.

The design of a multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER) is described. The control system design attempts to ameliorate some of the problems noted by some researchers when implementing subsumption or behavioral control systems, particularly with regard to multiple processor systems and real-time operations. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules by taking advantage of intertask communications channels, and by implementing each behavior module and each interconnection node as a stand-alone task. The potential advantages of this approach over those previously described in the field are discussed. An implementation of the architecture is planned for a prototype Robotic All Terrain Lunar Exploration Rover (RATLER) currently under development, and is briefly described.

More Details

Practical hot oiling and hot watering for paraffin control

Mansure, Arthur J.

One of the common oil-field wellbore problems is paraffin deposition. Even though hot oiling or hot watering is usually the first method tried for removing paraffin, few operators appreciate the limitations of ``hot oiling`` and the potential for the fluid to aggravate well problems and cause formation damage. Field tests have shown that the chemical and thermal processes that occur during ``hot oiling`` are very complex and that there are significant variations in practices among operators. Key issues include: (1) During a typical hot oiling job, a significant amount of the fluid injected into the well goes into the formation, and hence, particulates and chemicals in the fluid have the potential to damage the formation. (2) Hot oiling can vaporize oil in the tubing faster than the pump lifts oil. This interrupts paraffin removal from the well, and thus the wax is refined into harder deposits, goes deeper into the well, and can stick rods. These insights have been used to determine good ``hot oiling`` practices designed to maximize wax removal and minimize formation damage.

More Details

Correlation of hot-carrier stress and ionization induced degradation in bipolar transistors

Fleetwood, Daniel M.

The correlation of hot carrier stress and ionization induced gain degradation in npn BJTs was studied to determine if hot-carrier stress could be used as a hardness assurance tool for total dose. The correlation was measured at the wafer level and for several hardening variations for a single process technology. Additional experiments are planned and will be presented in the full paper. Based on a detailed physical analysis of the mechanisms for hot-carrier stress and ionization no correlation was expected. The results demonstrated the lack of correlation and indicate that hot-carrier stress degradation is not a predictor of total dose response.

More Details

Monitored Retrievable Storage/Multi-Purpose Canister analysis: Simulation and economics of automation

Bennett, Phil C.

Robotic automation is examined as a possible alternative to manual spent nuclear fuel, transport cask and Multi-Purpose canister (MPC) handling at a Monitored Retrievable Storage (MRS) facility. Automation of key operational aspects for the MRS/MPC system are analyzed to determine equipment requirements, through-put times and equipment costs is described. The economic and radiation dose impacts resulting from this automation are compared to manual handling methods.

More Details

An electrical test system for conductor formation process analysis

Estes, T.A.

Sandia National Laboratories has designed and built an electrical test system which fulfills a requirement to quickly, accurately and precisely measure the resistance of conductors formed on Printed Wiring Board (PWB) substrates. This requirement stems from the need to measure small variations in conductors and thus to determine the source of the variations. With this test technology, experiments can be conducted with new materials, equipment, and processes in a timely and scientific manner. Conductor formation processes can be optimized for both conductor yield and uniformity, and process equipment can be fine-tuned prior to processing product to ensure that conductor attributes fulfill requirements. Significant resources have been spent by Sandia National Laboratories and Texas Instruments modifying commercially available two-probe testers. AT&T has built a two-probe tester and obtained a commercially available ``bed-of-nails`` test system. The two-probe systems have limitations in speed and precision; the ``bed-of-nails`` system has proved to be superior to the two-probe designs but is expensive, and lacks test pattern flexibility and ease of use. Due to the need to establish a testing technology which meets the requirements of Sandia National Laboratories and the National Center for Manufacturing Sciences PWB Consortium Imaging Team (current Imaging Team members; AT&T, Texas Instruments, AlliedSignal, IBM, and Sandia National Laboratories), a prototype test system was designed and built by Sandia. This paper will discuss the design and performance of the test system and the results of a comparison to other test systems.

More Details

Hardness variability in commercial and hardened technologies

Shaneyfelt, Marty R.

Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is ``built-in`` through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

More Details

Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention

Chu, Tze Y.

This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactor vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.

More Details

High-performance GaAs/AlGaAs optical phase modulators for microwave photonic integrated circuits

Hietala, Vincent M.

A high-performance high-speed optical phase modulator for photonic integrated circuit (PIC) use is described. Integration of these optical phase modulators into a real system (compass) is also discussed. The optical phase modulators are based on depletion-edge translation and have experimentally provided optical phase shifts in excess of 60{degrees}/V{center_dot}mm with approximately 4 dB/cm loss while simultaneously demonstrating bandwidths in excess of 10 GHz.

More Details

Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

Fleming, K.J.; Crump, O.B.

VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR`s large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation. The solid State VISAR uses a prototype diode pumped ND:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

More Details

A strategy for analysis of TRU waste characterization needs

Leigh, Christi

Regulatory compliance and effective management of the nation`s TRU waste requires knowledge about the constituents present in the waste. With limited resources, the DOE needs a cost-effective characterization program. In addition, the DOE needs a method for predicting the present and future analytical requirements for waste characterization. Thus, a strategy for predicting the present and future waste characterization needs that uses current knowledge of the TRU inventory and prioritization of the data needs is presented.

More Details

A critical examination of charge funneling and its impact on single-event upset in Si devices

Dodd, Paul E.

Low-energy alpha particles emitted from packaging and high-energy heavy ions in space possess the capability of causing changes in memory state when incident on semiconductor memory cans and latch circuits. This phenomenon of single-event upset (SEU) is caused by collection of charge created as the particle travels through a sensitive volume of the device. As devices are continually down-sized, the corresponding decrease in amount of charge held on storage nodes increases device susceptibility to SEU. Solutions to harden devices to SEU require an in-depth understanding of the basic mechanisms responsible for upset. Also, a detailed understanding of the charge-collection volume is critical for predicting on-orbit error rates. Previous work has revealed the formation of a field funnel in response to the particle strike. Analytical models that treat the funnel in a time-averaged sense have been developed, and have been reasonably successful at predicting total collected charge for particles with low linear energy transfer (LET). Sophisticated two- and three-dimensional simulations have been used to investigate the funneling process more rigorously; however, the interplay between the funnel and collection by drift and diffusion has remained somewhat obscure. In this paper, we present an examination of fundamental charge-collection mechanisms and the role of the funnel, using advanced three-dimensional drift-diffusion modeling. We then apply the insight gained to address radiation hardness issues in light of current technology trends.

More Details

Developing communications requirements for Agile Product Realization

Forsythe, Christi A.

Sandia National Laboratories has undertaken the Agile Product Realization for Innovative electroMEchanical Devices (A-PRIMED) pilot project to develop and implement technologies for agile design and manufacturing of electrochemical components. Emphasis on information-driven processes, concurrent engineering and multi-functional team communications makes computer-supported cooperative work critical to achieving significantly faster product development cycles. This report describes analyses conducted in developing communications requirements and a communications plan that addresses the unique communications demands of an agile enterprise.

More Details

Using virtual objects to aid underground storage tank teleoperation

Anderson, Richard E.

In this paper we describe an algorithm by which obstructions and surface features in an underground storage tank can be modeled and used to generate virtual barrier function for a real-time telerobotic system, which provides an aid to the operator for both real-time obstacle avoidance and for surface tracking. The algorithm requires that the slave`s tool and every object in the waste storage tank be decomposed into convex polyhedral primitives, with the waste surface modeled by triangular prisms. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert`s polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summed and applied to the manipulator/teleoperator system. Experimental results using a PUMA 560 and a simulated waste surface validate the approach, showing that it is possible to compute the algorithm and generate smooth, realistic pseudo forces for the teleoperator system using standard VME bus hardware.

More Details

Solar activities at Sandia National Laboratories

Klimas, P.C.

The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth`s present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

More Details

Scenario development for the Waste Isolation Pilot Plant: Building confidence in the assessment

Swift, Peter

Scenario developments is part of the iterative performance assessment (PA) process for the Waste Isolation Pilot Plant (WIPP). Scenario development for the WIPP has been the subject of intense external review, and is certain to be the subject of continued scrutiny as the project proceeds toward regulatory compliance. The principal means of increasing confidence is this aspect of the PA will be through the use of a systematic and thorough procedure toward developing the scenarios and conceptual models on which the assessment is to be based. Early and ongoing interaction with project reviewers can assist with confidence building. Quality of argument and clarity of presentation in PA will be of key concern. Appropriate tools are required for documenting and tracking assumptions, through a single assessment phase, and between iterative assessment phases. Risks associated with future human actions are of particular concern to the WIPP project, and international consensus on the principles for incorporation of future human actions in assessments would be valuable.

More Details
Results 96476–96500 of 99,299
Results 96476–96500 of 99,299