Publications

Results 95301–95325 of 99,299

Search results

Jump to search filters

Local tetrahedron modeling of microelectronics using the finite-volume hybrid-grid technique

Riley, Douglas J.

The finite-volume hybrid-grid (FVHG) technique uses both structured and unstructured grid regions in obtaining a solution to the time-domain Maxwell`s equations. The method is based on explicit time differencing and utilizes rectilinear finite-difference time-domain (FDTD) and nonorthogonal finite-volume time-domain (FVTD). The technique directly couples structured FDTD grids with unstructured FVTD grids without the need for spatial interpolation across grid interfaces. In this paper, the FVHG method is applied to simple planar microelectronic devices. Local tetrahedron grids are used to model portions of the device under study, with the remainder of the problem space being modeled with cubical hexahedral cells. The accuracy of propagating microstrip-guided waves from a low-density hexahedron region through a high-density tetrahedron grid is investigated.

More Details

Characterization of E-glass/polyester woven fabric composite laminates and tubes

Guess, Tommy R.

This report describes an experimental study that supported the LDRD program ``A General Approach for Analyzing Composite Structures``. The LDRD was a tightly coupled analytical / experimental effort to develop models for predicting post-yield progressive failure in E-glass fabric/polyester composites subjected to a variety of loading conditions. Elastic properties, fracture toughness parameters, and failure responses were measured on flat laminates, rings and tubes to support the development and validation of material and structural models. Test procedures and results are presented for laminates tested in tension, compression, flexure, short beam shear, double cantilever beam Mode I fracture toughness, and end notched flexure Mode II fracture toughness. Structural responses, including failure, of rings loaded in diametral compression and tubes tested in axial compression, are also documented.

More Details

Modeling of a sinusoidal lobed injector: Vorticity and concentration fields for a cold flow

Strickland, James H.

In this report, we present a simple and somewhat preliminary numerical model of a sinusoidal lobed injector. The lobed (corrugated) injector is being considered by several investigators as a potentially efficient device to mix fuel and air for combustion purposes. In this configuration, air flows parallel to the troughs and valleys of corrugations which grow in amplitude in the stream-wise direction. These ramped corrugations produce stream-wise vortices which enhance the downstream mixing. For the lobed injector, the corrugations are actually double walled which allows one to inject fuel through the space between them into the flow downstream of the ramp. The simulation model presented herein is based on a vorticity formulation of the Navier-Stokes equations and is solved using an unsteady viscous vortex method. In order to demonstrate the utility of this method we have simulated the three-dimensional cold mixing process for injection of methane gas into air. The vorticity and fuel concentration field downstream of the injector are simulated for two different injector geometries. We observe from these two simulations that variation of the amplitude of the corrugations can be used to achieve considerably different mixing patterns downstream of the injector.

More Details

Gas intrusion into SPR caverns

Hinkebein, Thomas E.

The conditions and occurrence of gas in crude oil stored in Strategic Petroleum Reserve, SPR, caverns is characterized in this report. Many caverns in the SPR show that gas has intruded into the oil from the surrounding salt dome. Historical evidence and the analyses presented here suggest that gas will continue to intrude into many SPR caverns in the future. In considering why only some caverns contain gas, it is concluded that the naturally occurring spatial variability in salt permeability can explain the range of gas content measured in SPR caverns. Further, it is not possible to make a one-to-one correlation between specific geologic phenomena and the occurrence of gas in salt caverns. However, gas is concluded to be petrogenic in origin. Consequently, attempts have been made to associate the occurrence of gas with salt inhomogeneities including anomalies and other structural features. Two scenarios for actual gas intrusion into caverns were investigated for consistency with existing information. These scenarios are gas release during leaching and gas permeation through salt. Of these mechanisms, the greater consistency comes from the belief that gas permeates to caverns through the salt. A review of historical operating data for five Bryan Mound caverns loosely supports the hypothesis that higher operating pressures reduce gas intrusion into caverns. This conclusion supports a permeability intrusion mechanism. Further, it provides justification for operating the caverns near maximum operating pressure to minimize gas intrusion. Historical gas intrusion rates and estimates of future gas intrusion are given for all caverns.

More Details

Chemical vapor deposited diamond-on-diamond powder composites (LDRD final report)

Panitz, J.K.; Hsu, W.L.; Tallant, D.R.; Mcmaster, M.; Fox, C.; Staley, D.

Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors developed techniques for forming diamond powder precursors and densified these precursors in a hot filament-assisted reactor and a microwave plasma-assisted reactor. Densification conditions were varied following a fractional factorial statistical design. A number of conclusions can be drawn as a result of this study. High density diamond powder green bodies that contain a mixture of particle sizes solidify more readily than more porous diamond powder green bodies with narrow distributions of particle sizes. No composite was completely densified although all of the deposits were densified to some degree. The hot filament-assisted reactor deposited more material below the exterior surface, in the interior of the powder deposits; in contrast, the microwave-assisted reactor tended to deposit a CVD diamond skin over the top of the powder precursors which inhibited vapor phase diamond growth in the interior of the powder deposits. There were subtle variations in diamond quality as a function of the CVI process parameters. Diamond and glassy carbon tended to form at the exterior surface of the composites directly exposed to either the hot filament or the microwave plasma. However, in the interior, e.g. the powder/substrate interface, diamond plus diamond-like-carbon formed. All of the diamond composites produced were grey and relatively opaque because they contained flawed diamond, diamond-like-carbon and glassy carbon. A large amount of flawed and non-diamond material could be removed by post-CVI oxygen heat treatments. Heat treatments in oxygen changed the color of the composites to white.

More Details

A fast and Robust Algorithm for general inequality/equality constrained minimum time problems

Briessen, B.; Sadegh, N.

This paper presents a new algorithm for solving general inequality/equality constrained minimum time problems. The algorithm`s solution time is linear in the number of Runge-Kutta steps and the number of parameters used to discretize the control input history. The method is being applied to a three link redundant robotic arm with torque bounds, joint angle bounds, and a specified tip path. It solves case after case within a graphical user interface in which the user chooses the initial joint angles and the tip path with a mouse. Solve times are from 30 to 120 seconds on a Hewlett Packard workstation. A zero torque history is always used in the initial guess, and the algorithm has never crashed, indicating its robustness. The algorithm solves for a feasible solution for large trajectory execution time t{sub f} and then reduces t{sub f} and then reduces t{sub f} by a small amount and re-solves. The fixed time re- solve uses a new method of finding a near-minimum-2-norm solution to a set of linear equations and inequalities that achieves quadratic convegence to a feasible solution of the full nonlinear problem.

More Details

A successful effort to involve stakeholders in the selection of a site for a corrective action management unit

Conway, R.

As part of the effort to clean up hazardous waste sites, Sandia National Laboratories in New Mexico (SNL/NM) adopted a novel approach to involving stakeholders in a key decision associated with its Environmental Restoration (ER) Project. The decision was where to locate a Corrective Action Management Unit (CAMU), an area designed to consolidate, store, and treat wastes generated from cleanup activities. The decision-making approach was a variation of a technique known as multiattribute utility analysis (MUA). Although MUA has rarely been undertaken during normal Project activities, it proved to be a surprisingly effective means for involving stakeholders in the decision process, generating consensus over a selected site, and enhancing public trust and understanding of Project activities. Requirements and criteria for selecting CAMU sites are provided by the Environmental Protection Agency`s (EPA`s) CAMU Final Rule (EPA 1993). Recognizing the lack of experience with the Rule and the importance of community understanding and support, the ER Project sought an approach that would allow stakeholders to participate in the site-selection process.

More Details

Destruction of Trace Organics in Otherwise Ultra Pure Water

Prairie, Michael R.

A number of experiments were conducted to determine the economic viability of applying various ultraviolet (UV) oxidation processes to a waste water stream containing approximately 12 mg/L total organic carbon (TOC), predominately ethylene glycol. In all experiments, a test solution was illuminated with either near-UV or a far-UV light alone or in combination with a variety of photocatalysts and oxidants. Based upon the outcomes of this project, both UV/photocatalysis and UV/ozone processes are capable of treating the water sample to below detection capabilities of TOC. However, the processes are fairly energy intensive; the most efficient case tested required 11 kWh per order of magnitude reduction in TOC per 1000 L. If energy consumption rates of 5-10 kWh/1000 L are deemed reasonable, then further investigation is recommended.

More Details

Integrating end-to-end encryption and authentication technology into broadband networks

Pierson, Lyndon G.

BISDN services will involve the integration of high speed data, voice, and video functionality delivered via technology similar to Asynchronous Transfer Mode (ATM) switching and SONET optical transmission systems. Customers of BISDN services may need a variety of data authenticity and privacy assurances, via Asynchronous Transfer Mode (ATM) services Cryptographic methods can be used to assure authenticity and privacy, but are hard to scale for implementation at high speed. The incorporation of these methods into computer networks can severely impact functionality, reliability, and performance. While there are many design issues associated with the serving of public keys for authenticated signaling and for establishment of session cryptovariables, this paper is concerned with the impact of encryption itself on such communications once the signaling and setup have been completed. Network security protections should be carefully matched to the threats against which protection is desired. Even after eliminating unnecessary protections, the remaining customer-required network security protections can impose severe performance penalties. These penalties (further discussed below) usually involve increased communication processing for authentication or encryption, increased error rate, increased communication delay, and decreased reliability/availability. Protection measures involving encryption should be carefully engineered so as to impose the least performance, reliability, and functionality penalties, while achieving the required security protection. To study these trade-offs, a prototype encryptor/decryptor was developed. This effort demonstrated the viability of implementing certain encryption techniques in high speed networks. The research prototype processes ATM cells in a SONET OC-3 payload. This paper describes the functionality, reliability, security, and performance design trade-offs investigated with the prototype.

More Details

Sinkhole progression at the Weeks Island, Louisiana, Strategic Petroleum Reserve (SPR) site

Neal, J.T.

A sinkhole measuring 11 m (36 ft) across and 9 m (30 ft) deep was first observed in alluvium overlying the Weeks Island, Louisiana, salt dome in May 1992, but it was about a year old, based on initial surface appearance and subsequent reverse extrapolation of growth rates. A second and much smaller sinkhole was identified in early 1995, nearly three years later. Their position directly over the edges of the SPR oil storage chamber, a former room-and-pillar salt mine, caused apprehension. The association of sinkholes over mines is well established and this occurrence suggested that groundwater influx undoubtedly was causing salt dissolution at shallow depth, and associated collapse of soil at the surface. Leaks of groundwater into other salt mines in Louisiana and elsewhere led to flooding and eventual abandonment (Coates et al., 1981). Consequently, much attention has been and continues to be given to characterizing these sinkholes, and to mitigation. This paper summarizes current engineering geologic concepts, and briefly describes diagnostic and risk mitigation efforts being conducted by the US Department of Energy, operator of the Strategic Petroleum Reserve (Bauer et al., 1994).

More Details

New functionalized block copolymers for bonding copper to epoxy

Kent, Michael S.

The authors are exploring the use of functionalized block copolymers for bonding copper to epoxy in printed wiring boards. The program involves four key elements: (i) synthesis of suitable functionalized block copolymers; (ii) characterization of the conformation of the copolymers at the relevant interfaces by neutron reflectivity; (iii) spectroscopic measurements of chemical bonding, and (iv) measurement of the mechanical properties of the interfaces. The copolymers are synthesized by living, ring-opening metathesis polymerization. This relatively new technique allows great flexibility for synthesis of functionalized block copolymers in that the initiators are relatively insensitive to a wide range of functional groups. Significant adhesion enhancement has been observed in lap shear tests.

More Details

Multidimensional fully-coupled thermal/chemical/mechanical response of reactive materials

Hobbs, Michael L.

A summary of multidimensional modeling is presented which describes coupled thermals chemical and mechanical response of reactive and nonreactive materials. This modeling addresses cookoff of energetic material (EM) prior to the onset of ignition. Cookoff, lasting from seconds to days, sensitizes the EM whereupon combustion of confined, degraded material determines the level of violence. Such processes are dynamic, occurring over time scales of millisecond to microsecond, and thus more amenable for shock physics analysis. This work provides preignition state estimates such as the amount of decomposition, morphological changes, and quasistatic stress states for subsequent dynamic analysis. To demonstrate a fully-coupled thermal/chemical/quasistatic mechanical capability, several example simulations have been performed: (1) the one-dimensional time-to-explosion experiments, (2) the Naval Air Weapon Center`s (NAWC) small scale cookoff bomb, (3) a small hot cell experiment and (4) a rigid, highly porous, closed-cell polyurethane foam. Predictions compared adequately to available data. Deficiencies in the model and future directions are discussed.

More Details

Microsystem technology development at Sandia National Laboratories

Smith, J.H.

An overview of the major sensor and actuator projects using the micromachining capabilities of the Microelectronics Development Laboratory at Sandia National Laboratories is presented. Development efforts are underway for a variety of surface micromachined sensors and actuators. A technology that embeds micromechanical devices below the surface of the wafer prior to microelectronics fabrication has also been developed for integrating microelectronics with surface micromachined micromechanical devices.

More Details

Novel electrolyte additives to enhance zinc electrode cycle life

Doddapaneni, N.

Electrochemical power sources that utilize zinc electrodes possess many advantages. Zinc is abundantly available, benign, inexpensive, stable over a wide operating temperature range, and has a high oxidation potential. In spite of these advantageous characteristics, rechargeable electrochemical systems based on zinc chemistry have not found widespread use. The major disadvantages of zinc electrodes are that they have limited cycle life due to zinc slumping and zinc electrode shape changes in alkaline solutions resulting from the solubility of zincate (Zn(OH){sub 4}{sup 2-}) in these solutions. As a result, premature cell failure often results due to cell shorting caused by dendritic growth as well as zinc slumping. In this paper we describe the chemical and physical characteristics of electrolyte solutions employing additives, particularly for zinc based electrochemical systems. These electrolytes are prepared using the alkali metal salts of 1,3,5-phenyltrisulfonic acid in combination with potassium hydroxide. The alkali metal salts of the acid possess good thermal stability, good ionic conductivity, and have a wide electrochemical voltage window in aqueous systems. With these electrolyte solutions improved cycle life was achieved in Zn/NiOOH and Zn/AgO. Improved cycle life with this additive is attributed to decreased zincate solubility, resulting in reduced zinc slumping and electrode shape changes. In addition, increased shelf-life and reduced self-discharge were also observed in many alkaline power sources.

More Details

Shock compression of quartz and aluminum powder mixtures

Graham, R.A.

The authors report about the shock-compression response of highly porous (55% and 65% dense) mixtures of 4Al + 3SiO{sub 2} powders having shock-induced phase transitions and chemical reactions. Shock recovery experiments were performed using the CETR/Sawaoka plate-impact system (P = 40 to 100 GPa) and the Sandia Momma Bear A Comp B fixture (P = 22 to 45 GPa). The recovered compacts contained the high pressure stishovite phase, products of chemical reaction, as well as unreacted constituents. The reaction products formed included Al{sub 2}O{sub 3} metallic Si (ambient and high pressure phases), SiAl intermetallic, and kyanite (Al{sub 2}SiO{sub 5}). The shock-induced chemical reaction in 4Al + 3SiO{sub 2} powder mixtures, appears to have been accompanied (or assisted) by the formation of stishovite, a high pressure phase of quartz.

More Details

A study of light point defect removal by SC-1 chemistries

Resnick, Paul

Recent research has shown that dilute SC-1 chemistries, when combined with high frequency sonication (megasonics) can be highly effective for particle removal. The mechanism by which the SC-1 chemistry facilitates particle removal remains unclear. Experiments were performed under extremely dilute conditions in order to help elucidate a cleaning mechanism. Results indicate that hydrogen peroxide, under extremely dilute conditions, is not necessary for effective particle removal. The increase in haze commonly attributed to increased surface roughness is not observed when sufficiently dilute ammonium hydroxide (e.g., 1:2700) is used. The role of hydrogen peroxide, when more concentrated chemistries are used, may be simply to mitigate surface etching and roughening, rather than to play an active role in particle removal.

More Details

Rating batteries for initial capacity, charging parameters and cycle life in the photovoltaic application

Hund, Thomas D.

Stand-alone photovoltaic (PV) systems typically depend on battery storage to supply power to the load when there is cloudy weather or no sun. Reliable operation of the load is often dependent on battery performance. This paper presents test procedures for lead-acid batteries which identify initial battery preparation, battery capacity after preparation, charge regulation set-points, and cycle life based on the operational characteristics of PV systems.

More Details

Dish/Stirling systems: Overview of an emerging commercial solar thermal electric technology

Strachan, John W.

Dish/Stirling is a solar thermal electric technology which couples parabolic, point-focusing solar collectors and heat engines which employ the Stirling thermodynamic cycle. Since the late 1970s, the development of Dish/Stirling systems intended for commercial use has been in progress in Germany, Japan, and the US. In the next several years it is expected that one or more commercial systems will enter the market place. This paper provides a general overview of this emerging technology, including: a description of the fundamental principles of operation of Dish/Stirling systems; a presentation of the major components of the systems (concentrator, receiver, engine/alternator, and controls); an overview of the actual systems under development around the world, with a discussion of some of the technical issues and challenges facing the Dish/Stirling developers. A brief discussion is also presented of potential applications for small Dish/Stirling systems in northern Mexico.

More Details

Pillowing doublets: Refining a mesh to ensure that faces share at most one edge

Mitchell, Scott A.

Occasionally one may be confronted by a hexahedral or quadrilateral mesh containing doublets, two faces sharing two edges. In this case, no amount of smoothing will produce a mesh with agreeable element quality: in the planar case, one of these two faces will always have an angle of at least 180 degrees between the two edges. The authors describe a robust scheme for refining a hexahedral or quadrilateral mesh to separate such faces, so that any two faces share at most one edge. Note that this also ensures that two hexahedra share at most one face in the three dimensional case. The authors have implemented this algorithm and incorporated it into the CUBIT mesh generation environment developed at Sandia National Laboratories.

More Details

The parallelization of an advancing-front, all-quadrilateral meshing algorithm for adaptive analysis

Lober, R.R.; Tautges, T.J.; Cairncross, R.A.

The ability to perform effective adaptive analysis has become a critical issue in the area of physical simulation. Of the multiple technologies required to realize a parallel adaptive analysis capability, automatic mesh generation is an enabling technology, filling a critical need in the appropriate discretization of a problem domain. The paving algorithm`s unique ability to generate a function-following quadrilateral grid is a substantial advantage in Sandia`s pursuit of a modified h-method adaptive capability. This characteristic combined with a strong transitioning ability allow the paving algorithm to place elements where an error function indicates more mesh resolution is needed. Although the original paving algorithm is highly serial, a two stage approach has been designed to parallelize the algorithm but also retain the nice qualities of the serial algorithm. The authors approach also allows the subdomain decomposition used by the meshing code to be shared with the finite element physics code, eliminating the need for data transfer across the processors between the analysis and remeshing steps. In addition, the meshed subdomains are adjusted with a dynamic load balancer to improve the original decomposition and maintain load efficiency each time the mesh has been regenerated. This initial parallel implementation assumes an approach of restarting the physics problem from time zero at each interaction, with a refined mesh adapting to the previous iterations objective function. The remeshing tools are being developed to enable real time remeshing and geometry regeneration. Progress on the redesign of the paving algorithm for parallel operation is discussed including extensions allowing adaptive control and geometry regeneration.

More Details

Scaling behavior in the conductivity of alkali oxide glasses

Sidebottom, D.L.

Although the frequency dependent conductivity, {sigma}({omega}), of ion-containing glasses displays power law dispersion ({sigma}({omega}) {approx} {omega}{sup n}) that can usually be described by a master curve, several findings have suggested that this scaling fails at low temperatures as indicated by a temperature dependence of the scaling exponent, n. The authors investigate this behavior in the frequency range between 1 Hz and 10{sup 6} Hz for a different materials including alkali metaphosphate glasses and a polymer. They identify two distinct regimes of conductive behavior, {sigma}{sub {vert_bar}} and {sigma}{sub {parallel}}. The first, {sigma}{sub {vert_bar}}, is strongly temperature dependent and appears to obey a master curve representation. The second, {sigma}{sub {parallel}}, exhibits only a weak temperature dependence with a roughly linear frequency dependence. A strong depression of {sigma}{sub {vert_bar}} occurs for the mixed alkali case, but {sigma}{sub {parallel}} is unaffected and occurs at roughly the same location in all the alkali compositions studied. They propose that {sigma}{sub {parallel}} does not arise from cation motion, but rather originates from a second mechanisms likely involving small distortions of the underlying glassy matrix. This assignment of {sigma}{sub {parallel}} is further supported by the roughly universal location of {sigma}{sub {parallel}}, to within an order of magnitude, of a variety of materials, including a polymer electrolyte and a doped crystal. Since {sigma}{sub {vert_bar}}(T) and {sigma}{sub {parallel}}(T {approx} const.) are viewed as separate phenomena, the temperature dependence of the scaling exponent is shown to result merely from a superposition of these two contributions and does not indicate any intrinsic failure of the scaling property of {sigma}{sub {vert_bar}}.

More Details

Materials and society -- Impacts and responsibilities

Westwood, A.R.C.

The needs of today`s advanced societies have moved well beyond the requirements for food and shelter, etc., and now are focused on such concerns as international peace and domestic security, affordable health care, the swift and secure transmission of information, the conservation of resources, and a clean environment. Progress in materials science and engineering is impacting each of these concerns. This paper will present some examples of how this is occurring, and then comment on ethical dilemmas that can arise as a consequence of technological advances. The need for engineers to participate more fully in the development of public policies that help resolve such dilemmas, and so promote the benefits of advancing technology to society, will be discussed.

More Details

The Web Interface Template System (WITS), a software developer`s tool

Lauer, L.J.

The Web Interface Template System (WITS) is a tool for software developers. WITS is a three-tiered, object-oriented system operating in a Client/Server environment. This tool can be used to create software applications that have a Web browser as the user interface and access a Sybase database. Development, modification, and implementation are greatly simplified because the developer can change and test definitions immediately, without writing or compiling any code. This document explains WITS functionality, the system structure and components of WITS, and how to obtain, install, and use the software system.

More Details

An assessment of space reactor technology needs and recommendations for development

Marshall, Albert C.

In order to provide a strategy for space reactor technology development, the Defense Nuclear Agency (DNA) has authorized a brief review of potential national needs that may be addressed by space reactor systems. a systematic approach was used to explore needs at several levels that are increasingly specific. Level 0 -- general trends and issues; Level 1 -- generic space capabilities to address trends; Level 2 -- requirements to support capabilities; Level 3 -- system types capable of meeting requirements; Level 4 --generic reactor system types; and Level 5 -- specific baseline systems. Using these findings, a strategy was developed to support important space reactor technologies within a limited budget. A preliminary evaluation identified key technical issues and provide a prioritized set of candidate research projects. The evaluation of issues and the recommended research projects are presented in a companion paper.

More Details

Electron induced surface chemistry at the Cs/sapphire interface

Zavadil, Kevin R.

Electron induced etching of sapphire in the presence of Cs has been studied using a variety of surface analytical techniques. We find that this process occurs on both the (0001) and (1102) orientations of sapphire. Monolayer amounts of Al and sub-oxides of Al are thermally desorbed from the surface at temperatures as low as 1000 K when the surface is irradiated with electrons in the presence of Cs. Etching is highly dependent on Cs coverage with the (0001) and (1102) surfaces requiring 2.0 {times} 10{sup 14} and 3.4 {times} 10{sup 14} atoms/cm{sup 2} to support etching, respectively. Adsorption profiles demonstrate that these coverages correspond to initial saturation of the surface with Cs. Electron damage of the surface in the absence of Cs also produces desorption of Al and sub-oxides of Al indicating a possible mechanism for etching. The impact of etching on the surface is to increase the adsorption capacity on the (0001) surface while decreasing both initial adsorption probability and capacity on the (1102) surface.

More Details
Results 95301–95325 of 99,299
Results 95301–95325 of 99,299