Publications

Results 93326–93350 of 96,771

Search results

Jump to search filters

Radioactive material transportation package design using numerical optimization techniques

Harding, David C.

Increasing computational speed has led to the development and use of sophisticated numerical methods in radioactive material (RAM) transportation container design. The design of a RAM container often involves a complex coupling of structural, thermal, and radioactive shielding analyses. Sandia National Laboratories has integrated automatic mesh generation, explicit structural finite element analysis, transient thermal finite element analysis, and numerical optimization techniques into a unified RAM container design tool to increase the efficiency of both the design process and the resultant design through coupled analyses. Although development of this technique has progressed significantly, inaccurate numerical gradients due to design space nonsmoothness and excessive computational time have hampered successful implementation of numerical optimization as a ``black box`` design tool. This paper presents the details of analysis tool integration, simplified model development, constraint boundary nonsmoothness difficulties, and numerical optimization results for a lightweight composite-overpack Type B RAM package subject to dynamic crush and fuel fire accident condition constraints.

More Details

New security paradigms workshop white paper

Fletcher, S.K.; Halbgewachs, R.; Jansma, R.; Lim, J.; Murphy, M.; Wyss, G.

An historical look at software systems reveals a progression of thinking about protection and risk management. In this paper, three generations are defined. For each, we examine the prevalent views of risk, risk assessment, and risk mitigation. We also examine prevalent strategies for assurance. Many gaps exist in current knowledge of how to manage and assess risks in software systems. This paper presents a new perspective which enables comprehensive risk-based design and evaluation of systems, spanning a range of surety concerns (including correctness and safety, in addition to traditional security concerns), and addressing multiple system aspects. We believe this to be a new and unique multidisciplinary approach which transcends both traditional security approaches and traditional risk analysis methods. It facilitates a risk analysis completely tailored to the system at hand, instantiating its threats, its barriers, and its needs for risk reduction.

More Details

High rate dry etching of GaN, AlN and InN in ECR Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar plasmas

Shul, Randy J.

Etch rates for binary nitrides in ECR Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar are reported as a function of temperature, rf-bias, microwave power, pressure and relative gas proportions. GaN etch rates remain relatively constant from 30 to 125{degrees}C and then increase to a maximum of 2340 {angstrom}-min{sup {minus}1} at 170{degrees}C. The AlN etch rate decreases throughout the temperature range studied with a maximum of 960 {angstrom}-min{sup {minus}1} at 30{degrees}C. When CH{sub 4} is removed from the plasma chemistry, the GaN and InN etch rates are slightly lower, with less dramatic changes with temperature. The surface composition of the III-V nitrides remains unchanged over the temperatures studied. The GaN and InN rates increase significantly with rf power, and the fastest rates for all three binaries are obtained at 2 mTorr. Surface morphology is smooth for GaN over a wide range of conditions, whereas InN surfaces are more sensitive to plasma parameters.

More Details

The probability of containment failure by direct containment heating in surry

Pilch, M.M.; Allen, M.D.; Bergeron, K.D.; Tadios, E.L.; Stamps, D.W.; Spencer, B.W.; Quick, K.S.; Knudson, D.L.

In a light-water reactor core melt accident, if the reactor pressure vessel (RPV) fails while the reactor coolant system (RCS) at high pressure, the expulsion of molten core debris may pressurize the reactor containment building (RCB) beyond its failure pressure. A failure in the bottom head of the RPV, followed by melt expulsion and blowdown of the RCS, will entrain molten core debris in the high-velocity steam blowdown gas. This chain of events is called a high-pressure melt ejection (HPME). Four mechanisms may cause a rapid increase in pressure and temperature in the reactor containment: (1) blowdown of the RCS, (2) efficient debris-to-gas heat transfer, (3) exothermic metal-steam and metal-oxygen reactions, and (4) hydrogen combustion. These processes, which lead to increased loads on the containment building, are collectively referred to as direct containment heating (DCH). It is necessary to understand factors that enhance or mitigate DCH because the pressure load imposed on the RCB may lead to early failure of the containment.

More Details

Simulations of hydrodynamic interactions among immersed particles in stokes flow using a massively parallel computer

Mondy, L.A.

In this paper, a massively parallel implementation of the boundary element method to study particle transport in Stokes flow is discussed. The numerical algorithm couples the quasistatic Stokes equations for the fluid with kinematic and equilibrium equations for the particles. The formation and assembly of the discretized boundary element equations is based on the torus-wrap mapping as opposed to the more traditional row- or column-wrap mappings. The equation set is solved using a block Jacobi iteration method. Results are shown for an example application problem, which requires solving a dense system of 6240 equations more than 1200 times.

More Details

Characterization of microenvironment polarity and solvent accessibility of polysilsesquioxane xerogels by the fluorescent probe technique

Loy, Douglas A.

Poly (1, 4 bis(triethoxysilyl)benzene) (PTESB), a representative of a new type of organic-inorganic hybrid polysilsesquioxane material, was characterized by fluorescence spectroscopy for both microenvironmental polarity and solvent accessibility. A dansyl fluorescent molecule was incorporated into the bulk as well as onto the surface of both PTESB and silica materials. Information about the microenvironment polarity and accessibility of PTESB to various organic solvents was determined and compared to that of silica gel. This study found that both the bulk and surface of PTESB are less polar than that of the silica material. The silica material is accessible to polar solvents and water, while YMB is accessible to polar solvents but not to water. The hydrophobicity of PTESB differentiates these new materials from silica gel.

More Details

Unified model of the rf plasma sheath

Riley, Merle E.

By developing an approximation to the first integral of the Poisson equation, one can obtain solutions for the voltage-current characteristics of a radio-frequency (rf) plasma sheath that are valid over the whole range of inertial response of the ions to an imposed rf voltage or current-specified conditions. The theory adequately reproduces the time-dependent voltage-current characteristics of the two extreme cases corresponding to the Lieberman rf sheath theory and the Metze-Ernie-Oskam theory. Contained within the approximation is a time constant which controls the amount of ion response to the rf electric field. A prescription is given for determining this ion relaxation time constant, which also determines the time-dependent ion impact energy on the electrode surface.

More Details

Fundamental surface chemistry of GaAs OMVPE

Creighton, J.R.

Organometallic and hydride compounds are widely used as precursors for the epitaxial growth of GaAs and other compound semiconductors. These precursors are most commonly used to perform organometallic vapor phase epitaxy (OMVPE) and also in related deposition techniques such as atomic layer epitaxy (ALE) and metalorganic molecular beam epitaxy (MOMBE). We have investigated the surface chemical properties of these precursors on GaAs(100) using a variety of surface science diagnostics. Results have shed light on the mechanisms of precursor decomposition which lead to film growth and carbon doping. For instance, kinetics of trimethylgallium (TMGa) decomposition on the Ga-rich and As-rich surfaces, measured by TPD, are in semiquantitative agreement with ALE results; indicating that the dominant growth mechanism during ALE is heterogeneous. Furthermore, there is no compelling evidence for the production of methane (CH{sub 4}) on the GaAs surface when TMGa and arsine (AsH{sub 3}) are coadsorbed.

More Details

A reconfigurable optoelectronic interconnect technology for multi-processor networks

Zolper, J.C.

This paper describes a new optical interconnect architecture and the integrated optoelectronic circuit technology for implementing a parallel, reconfigurable, multiprocessor network. The technology consists of monolithic array`s of optoelectronic switches that integrate vertical-cavity surface-emitting lasers with three-terminal heterojunction phototransistors, which effectively combined the functions of an optical transceiver and an optical spatial routing switch. These switches have demonstrated optical switching at 200 Mb/s, and electrical-to-optical data conversion at > 500 Mb/s, with a small-signal electrical-to-optical modulation bandwidth of {approximately} 4 GHz.

More Details

A bimodal power and propulsion system based on cermet fuel and heat pipe energy transport

Polansky, Gary F.

Bimodal space reactor systems provide both thermal propulsion for the spacecraft orbital transfer and electrical power to the spacecraft bus once it is on station. These systems have the potential to increase both the available payload in high energy orbits and the available power to that payload. These increased mass and power capabilities can be used to either reduce mission cost by permitting the use of smaller launch vehicles or to provide increased mission performance from the current launch vehicle. A major barrier to the deployment of these bimodal systems has been the cost associated with their development. This paper describes a bimodal reactor system with performance potential to permit more than 70% of the instrumented payload of the Titan IV/Centaur to be launched from the Atlas IIAS. The development cost is minimized by basing the design on existing component technologies.

More Details

Thin film circuit fabrication on diamond substrates for high power applications

Norwood, D.

Sandia Laboratories has developed a thin film diamond substrate technology to meet the requirements for high power and high density circuits. Processes were developed to metallize, photopattern, laser process, and, package diamond thin film networks which were later assembled into high power multichip modules (MCMS) to test for effectiveness at removing heat. Diamond clearly demonstrated improvement in heat transfer during 20 Watt, strip heating experiments with junction-to-ambient temperature increases of less than 24 C compared to 126 C and 265 C for the aluminum nitride and ceramic versions, respectively.

More Details

Evaluation of conductive, radiative, chemical, and convective heat transfer in complex systems using a fast-running, implicit, lumped-capacitance formulation

Benjamin, A.S.

Accurate finite-element simulation of 3-D nonlinear heat transfer in complex systems may require meshes composed of tens of thousands of finite elements and hours of CPU time on today`s fastest computers. To treat applications in which thousands of calculations may be necessary such as for risk assessment or design of high-temperature manufacturing processes, methods are needed which can solve these problems far more efficiently and maintain an acceptably high degree of accuracy. For this purpose, we developed the Thermal Evaluation and Matching Program for Risk Applications (TEMPRA). The primary differentiator between TEMPRA and comparable codes is its numerical formulation, which is designed to be unconditionally stable even with very large time steps, to afford good accuracy even with relatively coarse meshing, and to facilitate benchmarking/calibration through the use of adjustable parameters. Analysis for a sample problem shows that TEMPRA can obtain temperature response solutions with errors of less than 10% using approximately 1/1000 of the computer time required by a typical finite element code.

More Details

Prosperity game for the national electronics manufacturing initiative

Berman, M.

Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents the Prosperity Game conducted under the sponsorship of the Electronics Subcommittee of the Civilian Industrial Technology Committee (under the National Science and Technology Council), and the Electronics Partnership Project. Players were drawn from the electronics industry, from government, national laboratories, and universities, and from Japan and Austria. The primary objectives of this game were: To connect the technical and non-technical (i.e., policy) issues that were developed in the roadmap-making endeavor of the National Electronics Manufacturing Initiative (NENI);to provide energy, enthusiasm and people to help the roadmap succeed; and to provide insight into high-leverage public and private investments. The deliberations and recommendations of these teams provide valuable insights as to the views of this diverse group of decision makers concerning policy changes, foreign competition, the robustness of strategic thinking and planning, and the development, delivery and commercialization of new technologies.

More Details

Surface micromachined microengine as the driver for micromechanical gears

Garcia, Ernest J.

The transmission of mechanical power is often accomplished through the use of gearing. The recently developed surface micromachined microengine provides us with an actuator which is suitable for driving surface micromachined geared systems. In this paper we will present aspects of the microengine as they relate to the driving of geared mechanisms, issues relating to the design of micro gear mechanisms, and details of a design of a microengine-driven geared shutter mechanism.

More Details

Smart gun technology requirements preliminary report

Weiss, D.R.

Goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing user-recognizing-and-authorizing surety technologies. This project is funded by the National Institute of Justice. This document reports the projects first objective: to find and document the requirements for a user-recognizing-and-authorizing firearm technology that law enforcement officers will value. This report details the problem of firearm takeaways in law enforcement, the methodology used to develop the law enforcement officers` requirements, and the requirements themselves.

More Details

The lustering of TBC-2

Diver, R.B.; Jones, S.; Robb, S.; Mahoney, A.R.

Two test bed concentrators (TBCs) were designed to provide high-performance test beds for advanced solar receivers and converters. However, the second-surface silvered-glass mirror facets on the TBCs, which were originally manufactured by the Jet Propulsion Laboratory, have experienced severe silver corrosion. To restore reflectance, TBC-2 was refurbished with a lustering technique developed at Sandia National Laboratories. In the lustering technique, second-surface silvered thin-glass mirrors were applied over the corroded facets, thereby increasing the dish reflectivity and raising the available power of TBC-2 from approximately 70 to 78 kW{sub t}. Degradation of the original optical accuracy of the TBC facets was determined to be minimal. Lustering was chosen over facet replacement because of the lower cost, the anticipated improvement in corrosion resistance, and the shorter project duration. This report includes background information, details of the lustering process, and test results from TBC-2 characterization, both before and after lustering.

More Details

Synthesis of silicon nitride powders in pulsed RF plasmas

Buss, Richard J.

Nanometer size silicon nitride particles are synthesized using a pulsed radio frequency plasma technique. The plasma is modulated with a square-wave on/off cycle of varying period to control size and morphology and to deduce the growth kinetics. In situ laser light scattering and ex situ particle analysis are used to study the nucleation and growth. For SiH{sub 4}/Ar plasmas which nucleate silicon particles, an initial extremely rapid growth phase is followed by a slower growth rate, approaching the rate of thin film deposition on adjacent flat surfaces. In SiH{sub 4}/NH{sub 3} plasmas, silicon nitride particle size can be tightly controlled by adjusting the plasma-on time. The size dispersion of the particles is large and is consistent with a process of continual nucleation during the plasma-on period. The observed polydispersity differs dramatically from that reported from other laboratories.

More Details

Capacitive sensor for high resolution weld seam tracking

Schmitt, D.J.

A non-contact capacitive sensing system has been developed for guiding automated welding equipment along typical v-groove geometries. The Multi-Axis Seam Tracking (MAST) sensor has been designed to produce four electric fields for locating and measuring the v-groove geometry. In this system, the MAST sensor is coupled with a set of signal conditioning electronics making it possible to output four varying voltages proportional to the electric field perturbations. This output is used for motion control purposes by the automated welding platform to guide the weld torch directly over the center of the v-groove. This report discusses the development of this capacitive sensing system. A functional description of the system and MAST sensor response characteristics for typical weld v-groove geometries are provided. The effects of the harsh thermal and electrical noise environments of plasma arc welding on sensor performance are discussed. A comparison of MAST sensor fabrication from glass-epoxy and thick-film ceramic substrates is provided. Finally, results of v-groove tracking experiments on a robotic welding platform are described.

More Details

Self-consistent temperature compensation for resonant sensors with application to quartz bulk acoustic wave chemical sensors

Smith, J.H.; Senturia, S.D.

Since resonant sensors have a temperature sensitivity which is often greater than their sensitivity to the phenomena they are being used to detect, it is imperative to include either temperature control or temperature compensation in any resonant sensor system. The authors have developed a temperature-compensation scheme for resonant sensors which is amenable to integration into a resonator-driver integrated circuit. An integrated circuit incorporating this scheme has been designed, built, and tested.

More Details

Enhancement of surface processes with low energy ions

Chason, E.

Continuing trends in device fabrication towards smaller feature sizes, lower thermal budgets and advanced device structures put greater emphasis on controlling the surface structure and reactivity during processing. Since the evolution of the semiconductor surface during processing is determined by the interaction of multiple surface processes, understanding how to control and modify these processes on the atomic level would enable us to exert greater control over the resulting morphology and composition. Low energy ions represent one method for bringing controlled amounts of energy to the surface to modify surface structure and kinetics. The kinetic energy deposited by the ions can break bonds and displace atoms, creating defect populations significantly in excess of the equilibrium concentration. Consequences of these non-equilibrium conditions include the enhancement of surface kinetic processes, increased surface reactivity and formation of metastable structures and compositions. These effects can be beneficial (ion enhanced mass transport can lead to surface smoothing) or they can be detrimental (residual defects can degrade electrical properties or lead to amorphization). The net results depend on a complex balance that depends on many parameters including ion mass, energy, flux and temperature. In the following section, we review progress both in our fundamental understanding of the production of low-energy ion-induced defects and in the use of low energy ions to enhance surface morphology, stimulate low temperature growth and obtain non-equilibrium structures and compositions.

More Details

Kauai Test Facility hazards assessment document

Banda Jr., Zeferino

The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.

More Details

Determination of kinetic coefficients for the simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans bacteria

Tucker, Mark D.

Uranium contamination of groundwaters and surface waters near abandoned mill tailings piles is a serious concern in many areas of the western United States. Uranium usually exists in either the U(IV) or the U(VI) oxidation state. U(VI) is soluble in water and, as a result, is very mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain anaerobic microorganisms, such as the sulfate-reducing bacteria Desulfovibrio desulfuricans, can mediate the reduction of U(VI) to U(IV). Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reactions have not been characterized. The purpose of this research was to perform kinetic studies on Desulfovibrio desulficans bacteria during simultaneous reduction of sulfate and uranium and to determine the phase in which uranium exists after it has been reduced and precipitated from solution. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. Kinetic coefficients for substrate utilization and cell growth were calculated using the Monod equation. The maximum rate of substrate utilization (k) was determined to be 4.70 days{sup {minus}1} while the half-velocity constant (K{sub s}) was 140 mg/l COD. The yield coefficient (Y) was determined to be 0.17 mg cells/mg COD while the endogenous decay coefficient (k{sub d}) was calculated as 0.072 days{sup {minus}1}. After reduction, U(IV) Precipitated from solution in the uraninite (UO{sub 2}) phase. Uranium removal efficiency as high as 90% was achieved in the chemostat.

More Details

Design and analysis of a high-performance shipping container for large payloads

Slavin, Adam M.

The packaging, designated the H1636A is a high-performing packageing for large payloads. The H1636A is 50 in. in diameter and 113 in. in length and weighs approximately 4600 lb when empty. The design objective was to meet 1996 proposed IAEA Type C criteria for air transport of large quantities of radioactive material (RAM). That is, the package should survive the standard Type B tests and more severe tests such as an impact onto an unyielding target at 280 ft/s and a one-hour jet fuel fire. The packaging consists of a large double-walled stainless steel outer drum filled with uniform density polyurethane foam. A stainless steel containment vessel (CV) with an inside diameter of 23 in. and a length of 78 in. carries the RAM. The CV has a nominal thickness of 0.375 in. and seals with two elastomeric 0-rings. The lid of the CV is joined to the body with a unique closure called a tape joint. The tape joint utilizes interlocking features preloaded with wedges and can withstand significant deformation.

More Details
Results 93326–93350 of 96,771
Results 93326–93350 of 96,771