Publications

Results 93651–93700 of 96,771

Search results

Jump to search filters

A modal test design strategy for model correlation

Carne, Thomas G.

When a modal test is to be performed for purposes of correlation with a finite element model, one needs to design the test so that the resulting measurements will provide the data needed for the correlation. There are numerous issues to consider in the design of a modal test; two important ones are the number and location of response sensors, and the number, location, and orientation of input excitation. From a model correlation perspective, one would like to select the response locations to allow a definitive, one-to-one correspondence between the measured modes and the predicted modes. Further, the excitation must be designed to excite all the modes of interest at a sufficiently high level so that the modal estimation algorithms can accurately extract the modal parameters. In this paper these two issues are examined in the context of model correlation with methodologies presented for obtaining an experiment design.

More Details

Real-time seam tracking for rocket thrust chamber manufacturing

Proceedings - IEEE International Conference on Robotics and Automation

Schmitt, D.J.

A sensor-based control approach for real-time seam tracking of rocket thrust chamber assemblies has been developed to enable automation of a braze paste dispensing process. This approach utilizes a non-contact Multi-Axis Seam Tracking (MAST) sensor to track the seams. The MAST sensor measures capacitance variations between the sensor and the workpiece and produces four varying voltages which are read directly into the robot controller. A PID control algorithm which runs at the application program level has been designed based upon a simple dynamic model of the combined robot and sensor plant. The control algorithm acts on the incoming sensor signals in real-time to guide the robot motion along the seam path. Experiments demonstrate that seams can be tracked at 100 mm/sec within the accuracy required for braze paste dispensing.

More Details

Prosperity Game: Advanced Manufacturing Day, May 17, 1994

Berman, M.

Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents a 90-minute Prosperity Game conducted as part of Advanced Manufacturing Day on May 17, 1994. This was the fourth game conducted under the direction of the Center for National Industrial Alliances at Sandia. Although previous games lasted from one to two days, this abbreviated game produced interesting and important results. Most of the strategies proposed in previous games were reiterated here. These included policy changes in international trade, tax laws, the legal system, and the educational system. Government support of new technologies was encouraged as well as government-industry partnerships. The importance of language in international trade was an original contribution of this game. The deliberations and recommendations of these teams provide valuable insights as to the views of this diverse group of decision makers concerning policy changes, foreign competition, and the development, delivery and commercialization of new technologies.

More Details

Fuzzy-algebra uncertainty assessment

Cooper, Arlin C.

A significant number of analytical problems (for example, abnormal-environment safety analysis) depend on data that are partly or mostly subjective. Since fuzzy algebra depends on subjective operands, we have been investigating its applicability to these forms of assessment, particularly for portraying uncertainty in the results of PRA (probabilistic risk analysis) and in risk-analysis-aided decision-making. Since analysis results can be a major contributor to a safety-measure decision process, risk management depends on relating uncertainty to only known (not assumed) information. The uncertainties due to abnormal environments are even more challenging than those in normal-environment safety assessments; and therefore require an even more judicious approach. Fuzzy algebra matches these requirements well. One of the most useful aspects of this work is that we have shown the potential for significant differences (especially in perceived margin relative to a decision threshold) between fuzzy assessment and probabilistic assessment based on subtle factors inherent in the choice of probability distribution models. We have also shown the relation of fuzzy algebra assessment to ``bounds`` analysis, as well as a description of how analyses can migrate from bounds analysis to fuzzy-algebra analysis, and to probabilistic analysis as information about the process to be analyzed is obtained. Instructive examples are used to illustrate the points.

More Details

Proceedings of the High Consequence Operations Safety Symposium

Cooper, Arlin C.

Many organizations face high consequence safety situations where unwanted stimuli due to accidents, catastrophes, or inadvertent human actions can cause disasters. In order to improve interaction among such organizations and to build on each others` experience, preventive approaches, and assessment techniques, the High Consequence Operations Safety Symposium was held July 12--14, 1994 at Sandia National Laboratories, Albuquerque, New Mexico. The symposium was conceived by Dick Schwoebel, Director of the SNL Surety Assessment Center. Stan Spray, Manager of the SNL System Studies Department, planned strategy and made many of the decisions necessary to bring the concept to fruition on a short time scale. Angela Campos and about 60 people worked on the nearly limitless implementation and administrative details. The initial symposium (future symposia are planned) was structured around 21 plenary presentations in five methodology-oriented sessions, along with a welcome address, a keynote address, and a banquet address. Poster papers addressing the individual session themes were available before and after the plenary sessions and during breaks.

More Details

Update of assessment of geotechnical risks, strategic petroleum reserve, Weeks Island site

Bauer, Stephen J.

This report is a critical reassessment of the geotechnical risks of continuing oil storage at the Weeks Island Strategic Petroleum Reserve site. It reviews all previous risk abatement recommendations, subsequent mitigative actions, and new information. Of increased concern, due to the discovery of a surface levels, is the long term maintainability of the mine as an oil storage repository. Mine operational changes are supported in order to facilitate monitoring of water entry diagnostics. These changes are also intended to minimize the volume in the mine available for water entry. Specific recommendations are made to implement the mine changes.

More Details

A design guide and specification for small explosive containment structures

Marchand, K.A.; Cox, P.A.; Polcyn, M.A.

The design of structural containments for testing small explosive devices requires the designer to consider the various aspects of the explosive loading, i.e., shock and gas or quasistatic pressure. Additionally, if the explosive charge has the potential of producing damaging fragments, provisions must be made to arrest the fragments. This may require that the explosive be packed in a fragment attenuating material, which also will affect the loads predicted for containment response. Material also may be added just to attenuate shock, in the absence of fragments. Three charge weights are used in the design. The actual charge is used to determine a design fragment. Blast loads are determined for a {open_quotes}design charge{close_quotes}, defined as 125% of the operational charge in the explosive device. No yielding is permitted at the design charge weight. Blast loads are also determined for an over-charge, defined as 200% of the operational charge in the explosive device. Yielding, but no failure, is permitted at this over-charge. This guide emphasizes the calculation of loads and fragments for which the containment must be designed. The designer has the option of using simplified or complex design-analysis methods. Examples in the guide use readily available single degree-of-freedom (sdof) methods, plus static methods for equivalent dynamic loads. These are the common methods for blast resistant design. Some discussion of more complex methods is included. Generally, the designer who chooses more complex methods must be fully knowledgeable in their use and limitations. Finally, newly fabricated containments initially must be proof tested to 125% of the operational load and then inspected at regular intervals. This specification provides guidance for design, proof testing, and inspection of small explosive containment structures.

More Details

Feature discovery in gray level imagery for one-class object recognition

IEEE International Conference on Neural Networks - Conference Proceedings

Koch, Mark W.

Feature extraction transforms an object's image representation to an alternate reduced representation. In one-class object recognition, we would like this alternate representation to give improved discrimination between the object and all possible non-objects and improved generalization between different object poses. Feature selection can be time-consuming and difficult to optimize so we have investigated unsupervised neural networks for feature discovery. We first discuss an inherent limitation in competitive type neural networks for discovering features in gray level images. We then show how Sanger's Generalized Hebbian Algorithm (GHA) removes this limitation and describe a novel GHA application for learning object features that discriminate the object from clutter. Using a specific example, we show how these features are better at distinguishing the target object from other non-target objects with Carpenter's ART 2-A as the pattern classifier.

More Details

Soil-penetrating synthetic aperture radar

Boverie, B.

This report summarizes the results for the first year of a two year Laboratory Directed Research and Development (LDRD) effort. This effort included a system study, preliminary data acquisition, and preliminary algorithm development. The system study determined the optimum frequency and bandwidth, surveyed soil parameters and targets, and defined radar cross section in lossy media. The data acquisition imaged buried objects with a rail-SAR. Algorithm development included a radar echo model, three-dimensional processing, sidelobe optimization, phase history data interpolation, and clutter estimation/cancellation.

More Details

Monitored retrievable storage/multi-purpose canister analysis: Simulation and economics of automation

High Level Radioactive Waste Management - Proceedings of the Annual International Conference

Bennett, Phil C.

Robotic automation is examined as a possible alternative to manual spent nuclear fuel, transport cask and Multi-Purpose Canister (MPC) handling at a Monitored Retrievable Storage (MRS) facility. Automation of key operational aspects for the MRS/MPC system are analyzed to determine equipment requirements, throughput times and equipment costs is described. The economic and radiation dose impacts resulting from this automation are compared to manual handling methods.

More Details

Transportation risk assessment of radioactive wastes generated by the N-Reactor stabilization program at the Hanford Site, Washington

Wheeler, Timothy A.

The potential radiological and nonradiological risks associated with specific radioactive waste shipping campaigns at the Hanford Site are estimated. The shipping campaigns analyzed are associated with the transportation of wastes from the N-Reactor site at the 200-W Area, both within the Hanford Reservation, for disposal. The analysis is based on waste that would be generated from the N-Reactor stabilization program.

More Details

Burnup verification using the FORK measurement system

High Level Radioactive Waste Management - Proceedings of the Annual International Conference

Ewing, Ronald I.

Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. The FORK measurement system, designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program, has been used to verify reactor site records for burnup and cooling time for many years. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. This report deals with the application of the FORK system to burnup credit operations based on measurements performed on spent fuel assemblies at the Oconee Nuclear Station of Duke Power Company.

More Details

Input shaping for three-dimensional slew maneuvers of a precision pointing flexible spacecraft

Proceedings of the American Control Conference

Dohrmann, Clark R.

A method is presented for input torque shaping for three-dimensional slew maneuvers of a precision pointing flexible spacecraft. The method determines the torque profiles for fixed-time, rest-to-rest maneuvers which minimize a specified performance index. Spacecraft dynamics are formulated in such a manner that the rigid body and flexible motions are decoupled. Furthermore, assembly of the equations of motion is simplified by making use of finite element analysis results. Input torque profiles are determined by solving an associated optimization problem using dynamic programming. Three example problems are provided to demonstrate the application of the method.

More Details

Microstructural development in solution-derived PZT thin films

Proceedings - Annual Meeting, Microscopy Society of America

Headley, Thomas J.

Lead zirconate titanate (PZT) thin films are of technological interest for a variety of electronic and optical applications. Fabrication of PZT films by solution deposition techniques is attractive because of stoichiometric control at the molecular level, ease of processing, and both low capital investment and total cost. Control of phase evolution, microstructure, crystallite size and orientation, and ferroelectric domain assemblage during processing is essential to optimize electrical and/or optical properties of the films. Electron microscopy techniques have been used extensively to correlate microstructural features with film processing.

More Details

Imaging targets embedded in a lossy half space with synthetic aperture radar

International Geoscience and Remote Sensing Symposium (IGARSS)

Doerry, Armin

This paper addresses theoretical aspects of forming images from an airborne Synthetic Aperture Radar (SAR) of targets buried below the earth's surface. Soil is generally a lossy, dispersive medium, with wide ranging variability in these attributes depending on soil type, moisture content, and a host of other physical properties. Focussing a SAR subsurface image presents new dimensions of complexity relative to its surface-image counterpart, even when the soil's properties are known. This paper treats the soil as a lossy, dispersive half space, and presents a practical model for the radar echo-delay time to point scatterers within it. This model is then used to illustrate effects of refraction, dispersion, and attenuation on a SAR's phase histories, and the resulting image. Various data collection geometries and processing strategies are examined for both 2-Dimensional and 3-Dimensional SAR images. The conclusions from this work are that 1) focussing a SAR image must generally take into account both refraction and dispersion, 2) resolving targets at different depths in lossy soils requires perhaps unprecedented sidelobe attenuation, that for some soils may only be achievable with specialized window functions, 3) the impulse response of the soil itself places a practical limit on the usable bandwidth of the radar, and 4) dynamic ranges and sensitivities will need to be orders of magnitude greater than typical surface-imaging SARs, leading to significant impact on SAR parameters, for example compressing the usable range of pulse repetition frequencies (PRFs).

More Details

New approach to strip-map SAR autofocus

IEEE Digital Signal Processing Workshop

Wahl, Daniel E.

This paper demonstrates how certain concepts from the Phase Gradient Autofocus (PGA) algorithm for automated refocus of spotlight mode SAR imagery may be used to design a similar algorithm that applies to SAR imagery formed in the conventional strip-mapping mode. The algorithm derivation begins with the traditional view of strip-map image formation as convolution (compression) using a linear FM chirp sequence. The appropriate analogies and modifications to the spotlight mode case are used to describe a working algorithm for strip-map autofocus.

More Details

Gettering in multicrystalline silicon - a design-of-experiments approach

Conference Record of the IEEE Photovoltaic Specialists Conference

Schubert, William K.

Statistical methods were used to design and analyze the results of a gettering experiment on four industrial multicrystalline silicon solar cell materials. The experiment studied the effects of temperature and time in the POCl3 diffusion process and the aluminum alloy process using simple diagnostic devices. The time and temperature ranges were restricted to maintain compatibility with commercial fabrication sequences. The design was capable of picking up second order interactions between the various processing factors. Statistically significant gettering effects were detected in only two of the four materials. The results for one of these materials were further tested using full solar cells. Strengths and weaknesses of this approach to gettering studies have become apparent in the present work and are discussed.

More Details

Parallel solid mechanics codes at Sandia National Laboratories

American Society of Mechanical Engineers, Computer Engineering Division, CED

Mcglaun, M.

Computational physicists at Sandia National Laboratories have moved their production codes to distributed memory parallel computers. Such an effort required the development of parallel algorithms, parallel data bases and parallel support tools. The Eulerian CTH code was rewritten. Moving both ALEGRA and PRONTO to parallel computers required only a modest number of modifications. It involved restructuring the restart and graphics data bases to make them parallel and minimize the I/O to the parallel computer. It also involved developing mesh decomposition tools to divide a rectangular or arbitrary connectivity into sub-meshes. It also involved developing new visualization tools to process the very large, parallel data bases. This paper also discusses Sandia's experiences running these codes on its 1840 compute node Intel Paragon, 1024 processor nCUBE and networked stations.

More Details

Lossless compression of weight vectors from an adaptive filter

Midwest Symposium on Circuits and Systems

Bredemann, M.V.

Techniques for lossless waveform compression can be applied to the transmission of weight vectors from an orbiting satellite. The vectors, which are a part of a hybrid analog/digital adaptive filter, are a representation of the radio frequency background seen by the satellite. An approach is used which treats each adaptive weight as a time-varying waveform.

More Details

Non-linear transformer modeling and simulation

Midwest Symposium on Circuits and Systems

Archer, Wendel E.

Transformers models for simulation with Pspice and Analogy's Saber are being developed using experimental B-H Loop and network analyzer measurements. The models are evaluated for accuracy and convergence using several test circuits. Results are presented which demonstrate the effects on circuit performance from magnetic core losses, eddy currents, and mechanical stress on the magnetic cores.

More Details

World's first 15%-efficient multicrystalline silicon modules

Conference Record of the IEEE Photovoltaic Specialists Conference

King, David L.

This paper describes the result of a team effort at Sandia to demonstrate the near-term performance potential for multicrystalline silicon modules using commercial mc-Si material and improved cell fabrication processes. Large-area high-performance mc-Si cells were fabricated, prototype modules were built, and world-record module efficiency was confirmed by outdoor testing at over 15% for standard test conditions.

More Details

Chemical recognition software

Wagner, John S.

We have developed a capability to make real time concentration measurements of individual chemicals in a complex mixture using a multispectral laser remote sensing system. Our chemical recognition and analysis software consists of three parts: (1) a rigorous multivariate analysis package for quantitative concentration and uncertainty estimates, (2) a genetic optimizer which customizes and tailors the multivariate algorithm for a particular application, and (3) an intelligent neural net chemical filter which pre-selects from the chemical database to find the appropriate candidate chemicals for quantitative analyses by the multivariate algorithms, as well as providing a quick-look concentration estimate and consistency check. Detailed simulations using both laboratory fluorescence data and computer synthesized spectra indicate that our software can make accurate concentration estimates from complex multicomponent mixtures. even when the mixture is noisy and contaminated with unknowns.

More Details

Application of HTS technology to cardiac dysrhythmia detection

Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings

Sobel, A.L.

This paper discusses the conceptual design considerations and challenges for development of a contactless, mobile, single channel biomagnetic sensor system based on High-Temperature Superconductor (HTS) Superconducting Quantum Interference Devices (SQUIDs) and employing the Three-SQUID Gradiometer (TSG) concept. Operating in magnetically unshielded environments, as are encountered in many medical scenarios, this instrument class would monitor cardiac electrical activity with minimal patient preparation and intrusiveness, and would notionally be coupled with a clinically adaptive human-system interface (HSI).

More Details

Acid-site characterization of water-oxidized alumina films by near-edge x-ray absorption and soft x-ray photoemission

Shinn, Neal D.

Hydroxylated alumina films have been synthesized by water oxidation of single crystal Al(110) surfaces. Thermal dehydroxylation results in anion vacancies which produce an Al(3s) defect state 3.5 eV below the conduction band edge. A maximum in the defect-DOS occurs for oxides heated to 350 to 400C, which is where the materials exhibit maximum Lewis acidity with respect to C{sub 2}H{sub 4}. Adsorbed C{sub 2}H{sub 4} produces thermally active C{sub 2} species which interact covalently with the defect-DOS and nonbonding O(2p) from the top of the valence band. C(1s) binding energies suggest significant charge transfer which is consistent with a carbenium ion. Ni evaporated onto the surface, however, transfers charge directly to Al species and does not interact with O atoms at the defect site. The defect-DOS is regenerated when the C{sub 2} species decomposes or when Ni migrates thermally through the oxide layer.

More Details

1993 annual final progress report: July 1992 through June 1993

Rohatgi, A.; Crotty, G.; Chen, Z.; Sana, P.; Salami, J.; Doolittle, A.; Pang, A.; Pham, T.

This is the first annual report since the Inauguration of the University Center of Excellence for Photovoltaics Research and Development (UCEP) at Georgia Tech. The essential objective of the Center is to improve the fundamental understanding of the science and technology of advanced PV devices and materials, to provide training and enrich the educational experience of students in the field, and to increase US competitiveness by providing guidelines to industry and DOE for achieving cost-effective and high efficiency PV devices. These objectives are to be accomplished through a combination of research and education. This report summarizes the technical accomplishments, including modeling, processing, and characterization of cast multicrystalline silicon solar cells; use of modeling and PCD measurements to develop a road map for progressing toward 20% multicrystalline and 25% single crystalline cells; the development of a novel PECVD SiN/SiO{sub 2} AR coating that also provides good surface passivation; PECVD deposited SiO{sub 2} films with record low S and D{sub it} at the SiO{sub 2}/Si interface; and educational activities and accomplishments.

More Details

Meeting on flows of granular materials in complex geometries

Passman, S.L.

The International Energy Agency Fossil Fuel Multiphase Flow Sciences Agreement has been in effect since 1986. The traditional mechanism for the effort has been information exchange, effected by the inclusion of scientists in annual Executive committee meetings, by exchange of reports and papers, and by visits of scientists to one another`s institutions. In a sequence of informal meetings and at the 1993 Executive committee meeting, held in Pittsburgh, US in March 1994, it was decided that more intensive interactions could be productive. A candidate for such interactions would be specific projects. Each of these would be initiated through a meeting of scientists in which feasibility of the particular project was decided, followed by relatively intense international co-operation in which the work would be done. This is a report of the first of these meetings. Official or unofficial representatives from Canada, italy, japan, mexico, the United Kingdom, and the US met in Albuquerque, New Mexico, US, to consider the subject Flows of Granular Materials in Complex Geometries. Representatives of several other countries expressed interest but were unable to attend this meeting. Sixteen lectures were given on aspects of this topic. It was decided that a co-operative effort was desirable and possible. The most likely candidate for the area of study would be flows in bins and hoppers. Each of the countries wishing to co-operate will pursue funding for its effort. This report contains extended abstracts of the sixteen presentations and a transcription of the final discussion.

More Details

Primary standards laboratory report, 1st half 1994

Levy, Walbert G.T.

Sandia National Laboratories operates the Primary Standards Laboratory for the Department of Energy, Albuquerque Operations Office (DOE/AL). This report summarizes metrology activities that received emphasis in the first half of 1994 and provides information pertinent to the operation of the DOE/AL system-wide Standards and Calibration Program.

More Details

Benchmark testing and independent verification of the VS2DT computer code

Mccord, J.T.

The finite difference flow and transport simulator VS2DT was benchmark tested against several other codes which solve the same equations (Richards equation for flow and the Advection-Dispersion equation for transport). The benchmark problems investigated transient two-dimensional flow in a heterogeneous soil profile with a localized water source at the ground surface. The VS2DT code performed as well as or better than all other codes when considering mass balance characteristics and computational speed. It was also rated highly relative to the other codes with regard to ease-of-use. Following the benchmark study, the code was verified against two analytical solutions, one for two-dimensional flow and one for two-dimensional transport. These independent verifications show reasonable agreement with the analytical solutions, and complement the one-dimensional verification problems published in the code`s original documentation.

More Details

Intermediate scale borehole (Room C): In situ data report (January 1989--June 1993)

Munson, Darrell E.

Data are presented from the intermediate scale borehole test, an in situ test fielded in the pillar separating Rooms C1 and C2 at the Waste Isolation Pilot Plant (WIPP). The test was to provide data on the influence of scale, if any, on the structural behavior of underground openings in salt. These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. Construction of the test began in December 1989, with the drilling of the intermediate scale borehole in December 1990. Gage data in this report cover the period from January 1989 through June 1993.

More Details

Optical generation of radio-frequency power

Hietala, Vincent M.

An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100`s of mW`s at millimeter wave frequencies with a theoretical ``wall-plug`` efficiency approaching 34%.

More Details

Full report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes

Weinbrecht, Edward A.

US industry produces about 12 billion tons of waste a year, or two-thirds of the waste generated in the US. The costs of handling and disposing of these wastes are significant, estimated to be between $25 and $43 billion in 1991, and represent an increase of 66% since 1986. US industry also uses about one-third of all energy consumed in the nation, which adds to the environmental burden. Industrial wastes affect the environmental well-being of the nation and, because of their growing costs, the competitive abilities of US industry. As part of a national effort to reduce industrial wastes, the US Congress passed the Energy Policy Act (EPAct, P.L. 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy (DOE) to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess their availability and the energy, environmental, and cost effects of such technologies; and to report the results. Work for this report clearly pointed to two things, that there is insufficient data on wastes and that there is great breadth and diversity in the US industrial sector. This report identifies: information currently available on industrial sector waste streams, opportunities for demonstration of energy efficient pollution prevention technologies in two industries that produce significant amounts of waste--chemicals and petroleum, characteristics of waste reducing and energy saving technologies identifiable in the public literature, and potential barriers to adoption of waste reducing technologies by industry.

More Details

Summary report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes

Weinbrecht, Edward A.

On October 24, 1992, the President signed the Energy Policy Act of 1992 (EPAct, Public Law 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess the availability and the energy, environmental, and cost effects of such technologies; and to report the results within one year. This report is in response to that requirement. National waste reduction efforts in both the private and public sectors encompass a variety of activities to decrease the amount of wastes that ultimately enter their air, water, and land. DOE`s Office of Industrial Technologies (DOE/OIT) recognized the importance of these efforts and confirmed the federal government`s commitment to waste reduction by establishing the Industrial Waste Program (IWP) in 1990. The program is driven by industry and national needs, and is working on new technologies and information dissemination that industry identifies as vital. The national benefits of new technologies do not accrue to the economy until transferred to industry and incorporated into commercially available processes or products.

More Details

User`s manual for FAROW: Fatigue and reliability of wind turbine components: Version 1.1

Veers, P.S.; Winterstein, S.R.; Lange, C.H.; Wilson, T.A.

FAROW is a Computer program that assists in the probabilistic analysis of the Fatigue and Reliability of wind turbines. The fatigue lifetime of wind turbine components is calculated using functional forms for important input quantities. Parameters of these functions are defined in an input file as either constants or random variables. The user can select from a library of random variable distribution functions. FAROW uses structural reliability techniques to calculate the mean time to failure, probability of failure before a target lifetime, relative importance of each of the random inputs, and the sensitivity of the reliability to all input parameters. Monte Carlo simulation is also available. This user`s manual is intended to provide sufficient information to knowledgeably run the program and meaningfully interpret the results. The first chapter provides an overview of the approach and the results. Chapter 2 describes the formulation and assumptions used in the fatigue life calculations. Each of the input parameters is described in detail in Chapter 3 along with hints and warnings on usage. An explanation of the outputs is provided in Chapter 4. Two example problems are described and solved in Chapter 5, one for the case where extensive data are available and the other with limited data where the uncertainty is higher. A typical input file and the output files for the example problems are included in the appendices.

More Details

Final report for SNL/NM environmental drilling project

Wemple, R.P.

Concern for the environment and cost reduction are driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. The project has tested a variety of prototype machinery and hardware built by the industrial partner, Charles Machine Works (CMW), and SNL at several sites (Savannah River Site (SRS), Hanford, SNL, Kirtland AFB (KAFB), CMW), successfully installed usable horizontal environmental test wells at SRS and SNL/KAFB, and functioned as a clearing house for information regarding application of existing commercial machinery to a variety of governmental and commercial sites. The project has continued to test and develop machinery in FY 94. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of {open_quotes}cut/thrust and compact cuttings without adding large quantities of fluid{close_quotes} to an environmental problem site. This technology will be very cost-effective where applicable. Technology transfer and commercialization by CMW is ongoing and will continue into FY 95. Technology transfer to the private sector is ongoing and reflected in increasing machinery sales to environmental contractors. Education of regulatory agencies resulting in restructuring of appropriate regulatory standards for specification of the horizontal drilling techniques continues to be a long-range goal.

More Details

1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

Culp, Todd A.

This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1.

More Details

The electronic properties of polysilanes

Kepler, R.G.

Results of recent studies of the electronic properties of polysilanes are reviewed. The electronic states can be described by the Hueckel model if coulomb interactions are included using the Pariser-Parr-Pople approximation. The long polymer chains appear to be divided into random length, short, ordered segments by conformational defects, with the energy of the excited states depending on the length of the segments. In isolated polymer chains energy is transferred from high-energy, short segments to longer, lower energy segments but the distance and time during which transfer take place is very limited. In solid films the excitons become highly mobile and remain mobile throughout their lifetime, even at low temperatures. Holes are quite mobile in solid films and the characteristics of transport are the same as those of charge carrier transport in molecularly doped polymer films.

More Details

Casing pull tests for directionally drilled environmental wells

Staller, George E.

A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it`s industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported.

More Details

Field measurements of soil air permeability at the Chemical Waste Landfill

Phelan, J.M.

The disposal of liquid organic solvents in unlined pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) has created an organic solvent vapor plume in the subsurface soils. The groundwater, at a depth of 485 feet below ground surface, shows contamination by the vapor plume. The primary strategy to remove the volatile organic constituents from the soil include methods based on vacuum vapor extraction technologies. These technologies utilize the physical process of inducing air flow through the soils, into an extraction well, and to the surface for collection and/or treatment. The ability of the soils to be ventilated by a vacuum vapor extraction system is primarily dependent on the permeability of the soil. However, soil stratigraphic layers can have different permeabilities due to the differences in soil texture (percentages of sand, silt, and clay) and soil structure (bulk density and pore size distribution). These differences can create local soil horizons that are preferentially ventilated. The less ventilated zones will prolong the removal of vapor phase contaminants. This will increase the time needed to reach the remediation cleanup levels. Air permeability estimates at sequential depth horizons would provide valuable design input for segmented well screen completion zones that may improve removal efficiency of vacuum vapor extraction systems. Soil permeability characterization can be accomplished in many ways including laboratory tests, field scale tests, and reference to analogous soil texture properties. The work presented here represents an evaluation of soil permeability test methods at selected locations of the CWL.

More Details

Water removal from a dry barrier cover system

Stormont, John C.

The results of the numerical simulations reveal that horizontal air flow through the coarse with reasonable pressure gradients can remove large quantities of water from the cover system. Initially, the water removal from the cover system is dominated by the evaporation and advection of water vapor out of the coarse layer. Once the coarse layer is dry, removal of water by evaporation near the fine/coarse layer interface reduces the local water content and water potential, and water moves toward the fine-coarse layer interface and becomes available for evaporation. This result is important in that it suggests the fine layer water content may be moderated by air flow in the coarse layer. Incorporating diffusion of water vapor from the fine layer into the coarse layer substantially increases the water movement out of the fine layer.

More Details

Thermal enhanced vapor extraction systems: Design, application and performance prediction including contaminant behavior

Phelan, James M.

Soil heating technologies have been proposed as a method to accelerate contaminant removal from subsurface soils. These methods include the use of hot air, steam, conductive heaters, in-situ resistive heating and in-situ radiofrequency heating (Buettner et.al., EPA, Dev et.al., Heath et.al.). Criteria for selection of a particular soil heating technology is a complex function of contaminant and soil properties, and efficiency in energy delivery and contaminant removal technologies. The work presented here seeks to expand the understanding of the interactions of subsurface water, contaminant, heat and vacuum extraction through model predictions and field data collection. Field demonstration will involve the combination of two soil heating technologies (resistive and dielectric) with a vacuum vapor extraction system and will occur during the summer of 1994.

More Details

Light shaping diffusers{trademark} improve aircraft inspection

Shagam, Richard N.

Physical Optical Corporation has introduced a Light Shaping Diffuser{trademark} (LSD) for the specialized illumination requirements of aircraft inspection. Attached to a handheld, battery-powered flashlight, this light-weight, holographic diffuser element provides bright, even illumination as aircraft inspectors perform the important task of visually examining aircraft for possible structural defects. Field trials conducted by the Aging Aircraft Program at Sandia National Laboratories confirm that the LSD-equipped flashlights are preferred by visual inspectors over stock flashlights.

More Details

Conceptual design of an ascent-phase interceptor missile

Salguero, D.E.

A conceptual design for an air-launched interceptor missile to defend against theater ballistic missiles is presented. The missile is designed to intercept the target while ascending, during Or just after the boost phase, before it reaches exo-atmospheric flight. The interceptor consists of a two-stage booster and a shrouded kinetic-kill vehicle. This report concentrates on the booster design required to achieve reasonable standoff ranges. The kinetic-kill vehicle and shroud (the payload) is assumed to weigh 80 lb{sub m} (36 kg) and assumed to contain guidance computers for both the kill vehicle and the booster. The interceptor missile is about 6 m long, .48 m in diameter and weighs about 900 kg. Allowing 25 sec for target detection, trajectory estimation, and interceptor launch, it can intercept 90 sec after target launch from a 220 km stand-off range at an altitude of 60 km. Trade-off studies show that the interceptor performance is most sensitive to the stage mass fractions (with the first-stage mass fraction the most important), the first-stage burn time and the payload weight.

More Details

The spectral content of the torque loads on a turbine gear tooth

Sutherland, Herbert J.

The torque loads on two classes of wind turbine gearboxes are analyzed using a time-at-torque technique and a rainflow counting technique to determine the cyclic loads on the gear teeth. The two techniques are compared and contrasted to one another using representative samples of the time histograms from a Micon 65 and the Sandia/DOE Test Bed wind turbines. To place these differences in perspective, Miner’s Rule is used to determine the damage produced by each of the distributions. The damage analyses illustrate that the differences in the distributions are minimal.

More Details

A Sandia National Laboratories decontamination and demolition success story

Miller, David R.

Sandia National Laboratories/New Mexico (SNL/NM) has established a formal facility assessment, decontamination and demolition oversight process with the goal of ensuring that excess or contaminated facilities are managed in a cost-effective manner that is protective of human health and the environment. The decontamination and demolition process is designed so that all disciplines are consulted and have input from the initiation of a project. The committee consists of all essential Environmental, Safety and Health (ES and H) and Facilities disciplines. The interdisciplinary-team approach has provided a mechanism that verifies adequate building and site assessment activities are conducted. This approach ensures that wastes generated during decontamination and demolition activities are handled and disposed according to Department of Energy (DOE), Federal, state, and local requirements. Because of the comprehensive nature of the SNL decontamination and demolition process, the strategy can be followed for demolition, renovation and new construction projects, regardless of funding source. An overview of the SNL/NM decontamination and demolition process is presented through a case study which demonstrates the practical importance of the formal process.

More Details

Reactor pumped laser research at the Sandia National Laboratories pulsed reactor facilities

Bodette, David E.

Sandia National Labs has been investigating concepts for high power lasers pumped directly by fission energy. The direct pumping of laser media with fission fragments offers the potential advantages of scaling to high powers and very long run times in a compact, self powered system. To investigate the potential of this concept, extensive experiments have been conducted in the Annular Core Research Reactor (ACRR) and the Sandia Pulsed Reactor (SPR-III). These experiments include laser physics tests, radiation effects tests on optical materials, and experiments to examine the scaling of reactor pumped lasers to high powers. The SPR-III is a U-10%Mo fast burst reactor which is used for laser physics experiments. SPR-III is capable of 70 to 1500 {mu}s FWHM pulses generating up to several kW/cc excitation in a liter size laser cavity. The pulse widths greater than a few hundred microseconds are achieved using a pulse stretcher consisting of gram amounts of fissile material surrounded by moderator. The ACRR is a UO{sub 2}BeO fueled epithermal reactor which is used for larger volume scaling and beam quality experiments. ACRR operates in both steady state and pulsed modes with pulse widths of 7 to 250 ms resulting in excitation rates of {approximately}2 to 100 W/cc in excitation volumes of up to 50 1. Experimental configurations on both reactors have included central cavity and external cavity locations. The experiments on SPR-III have defined optimum conditions for efficient reactor pumping of rare gas lasers. This information has been used to define scaling experiments now in progress in the ACRR.

More Details

The energy intelligence information system

Malczynski, Leonard A.

The safety and security of foreign nuclear facilities is an important topic for intelligence services. This has been made more important by the breakup of the Former Soviet Union. The major requirement of intelligence analysts is rapid information retrieval after the report of an incident at a foreign facility. Sandia National Laboratories is developing a GIS-based Energy Intelligence Information System (EIIS) to help analysts at The Office of Energy Intelligence of the Department of Energy formulate a response to a nuclear incident. The Vital Issues process was used to determine which information might be the most important to collect. Joint Applications Design and prototyping sessions were held to establish EIIS requirements and refine the user interface. EIIS was built to access any point on the globe or to move directly to a site, facility, or city. The EIIS version 1.0 concentrates on commercial reactors, version 2.0 will include other nuclear fuel cycle sites and release 3.0 will include waste and disposal information. The system runs on a SUN workstation using ARC/INFO{trademark} and Informix as the RDBMS. The map system relies upon the Digital Chart of the World from the Defense Mapping Agency.

More Details
Results 93651–93700 of 96,771
Results 93651–93700 of 96,771