Shock Compression of Liquid Noble Gases to Several Mbar
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Hydrocarbon foams are commonly used in HEDP experiments, and are subject to shock compression from tens to hundreds of GPa. Modeling foams is challenging due to the heterogeneous character of the foam. A quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of pure poly(4-methyl-1-petene) (PMP) foams. We employ two models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties the simulations with the scatter in the experimental data.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings - 14th International Detonation Symposium, IDS 2010
Density Functional Theory (DFT) has over the last few years emerged as an indispensable tool for understanding the behavior of matter under extreme conditions. DFT based molecular dynamics simulations (MD) have for example confirmed experimental findings for shocked deuterium,1 enabled the first experimental evidence for a triple point in carbon above 850 GPa,2 and amended experimental data for constructing a global equation of state (EOS) for water, carrying implications for planetary physics.3 The ability to perform high-fidelity calculations is even more important for cases where experiments are impossible to perform, dangerous, and/or prohibitively expensive. For solid explosives, and other molecular crystals, similar success has been severely hampered by an inability of describing the materials at equilibrium. The binding mechanism of molecular crystals (van der Waals' forces) is not well described within traditional DFT.4 Among widely used exchange-correlation functionals, neither LDA nor PBE balances the strong intra-molecular chemical bonding and the weak inter-molecular attraction, resulting in incorrect equilibrium density, negatively affecting the construction of EOS for undetonated high explosives. We are exploring a way of bypassing this problem by using the new Armiento-Mattsson 2005 (AM05) exchange-correlation functional.5, 6 The AM05 functional is highly accurate for a wide range of solids,4, 7 in particular in compression.8 In addition, AM05 does not include any van der Waals' attraction,4 which can be advantageous compared to other functionals: Correcting for a fictitious van der Waals' like attraction with unknown origin can be harder than correcting for a complete absence of all types of van der Waals' attraction. We will show examples from other materials systems where van der Waals' attraction plays a key role, where this scheme has worked well,9 and discuss preliminary results for molecular crystals and explosives.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The noble gas xenon is a particularly interesting element. At standard pressure xenon is an fcc solid which melts at 161 K and then boils at 165 K, thus displaying a rather narrow liquid range on the phase diagram. On the other hand, under pressure the melting point is significantly higher: 3000 K at 30 GPa. Under shock compression, electronic excitations become important at 40 GPa. Finally, xenon forms stable molecules with fluorine (XeF{sub 2}) suggesting that the electronic structure is significantly more complex than expected for a noble gas. With these reasons in mind, we studied the xenon Hugoniot using DFT/QMD and validated the simulations with multi-Mbar shock compression experiments. The results show that existing equation of state models lack fidelity and so we developed a wide-range free-energy based equation of state using experimental data and results from first-principles simulations.