Publications

12 Results

Search results

Jump to search filters

Tunnel ionization within a one-dimensional, undriven plasma sheath

AIP Advances

Hooper, Russell H.; Patel, Nishant B.; Pacheco, Jose L.

In high density, high temperature plasmas, the plasma sheath that develops can result in extremely high electric fields, on the order of tens to hundreds of V/nm. Under the right conditions, these electric fields can reach magnitudes that can increase the probability of electron tunneling ionization to occur, resulting in one or more electron-ion pairs. The presence of tunneling ionization can then modify the development of the plasma sheath, as well as properties such as the ion and electron densities and plasma potential. The tunnel ionization process for hydrogen atoms is demonstrated, in this work, as implemented in a Sandia National Laboratories, particle-in-cell code Aleph. Results are presented for the application of the tunnel ionization process to a one-dimensional, undriven plasma sheath. Additional results for cases that consider warm ions and neutrals, the inclusion of electron-neutral collisions, and the injection of neutral particles, as well as the application to various plasma devices, will be discussed.

More Details

Comparative study of 0° X-cut and y + 36°-cut lithium niobate high-voltage sensing

Review of Scientific Instruments

Patel, Nishant B.; Branch, Darren W.; Schamiloglu, E.

A comparison study between Y + 36°and 0°X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36°crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36°cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36°cut, the 0°X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0°X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

More Details

Experimental validation of a high voltage pulse measurement method

Cular, Stefan C.; Patel, Nishant B.; Branch, Darren W.

This report describes X-cut lithium niobates (LiNbO3) utilization for voltage sensing by monitoring the acoustic wave propagation changes through LiNbO3 resulting from applied voltage. Direct current (DC), alternating current (AC) and pulsed voltage signals were applied to the crystal. Voltage induced shift in acoustic wave propagation time scaled quadratically for DC and AC voltages and linearly for pulsed voltages. The measured values ranged from 10 - 273 ps and 189 ps 2 ns for DC and non-DC voltages, respectively. Data suggests LiNbO3 has a frequency sensitive response to voltage. If voltage source error is eliminated through physical modeling from the uncertainty budget, the sensors U95 estimated combined uncertainty could decrease to ~0.025% for DC, AC, and pulsed voltage measurements.

More Details
12 Results
12 Results