Publications

Results 101–125 of 185

Search results

Jump to search filters

An experimental assembly for precise measurement of thermal accommodation coefficients

Review of Scientific Instruments

Trott, Wayne T.; Castaneda, Jaime N.; Torczynski, J.R.; Gallis, Michail A.; Rader, Daniel J.

An experimental apparatus has been developed to determine thermal accommodation coefficients for a variety of gas-surface combinations. Results are obtained primarily through measurement of the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Measured heat-flux data are used in a formula based on Direct Simulation Monte Carlo (DSMC) simulations to determine the coefficients. The assembly also features a complementary capability for measuring the variation in gas density between the plates using electron-beam fluorescence. Surface materials examined include 304 stainless steel, gold, aluminum, platinum, silicon, silicon nitride, and polysilicon. Effects of gas composition, surface roughness, and surface contamination have been investigated with this system; the behavior of gas mixtures has also been explored. Without special cleaning procedures, thermal accommodation coefficients for most materials and surface finishes were determined to be near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Surface cleaning by in situ argon-plasma treatment reduced coefficient values by up to 0.10 for helium and by ∼0.05 for nitrogen and argon. Results for both single-species and gas-mixture experiments compare favorably to DSMC simulations. © 2011 American Institute of Physics.

More Details

Improved-efficiency DSMC collision-partner selection schemes

Gallis, Michail A.; Torczynski, J.R.

The effect of collision-partner selection schemes on the accuracy and the efficiency of the Direct Simulation Monte Carlo (DSMC) method of Bird is investigated. Several schemes to reduce the total discretization error as a function of the mean collision separation and the mean collision time are examined. These include the historically first sub-cell scheme, the more recent nearest-neighbor scheme, and various near-neighbor schemes, which are evaluated for their effect on the thermal conductivity for Fourier flow. Their convergence characteristics as a function of spatial and temporal discretization and the number of simulators per cell are compared to the convergence characteristics of the sophisticated and standard DSMC algorithms. Improved performance is obtained if the population from which possible collision partners are selected is an appropriate fraction of the population of the cell.

More Details

Measured and predicted temperature profiles along MEMS bridges at pressures from 0.05 to 625 torr

Phinney, Leslie M.; Serrano, Justin R.; Piekos, Edward S.; Torczynski, J.R.; Gallis, Michail A.; Gorby, Allen D.

We will present experimental and computational investigations of the thermal performance of microelectromechanical systems (MEMS) as a function of the surrounding gas pressure. Lowering the pressure in MEMS packages reduces gas damping, providing increased sensitivity for certain MEMS sensors; however, such packaging also dramatically affects their thermal performance since energy transfer to the environment is substantially reduced. High-spatial-resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 microns wide, 2.25 microns thick, 12 microns above the substrate, and either 200 or 400 microns long in nitrogen atmospheres with pressures ranging from 0.05 to 625 Torr. Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared to the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The experimental and simulation results indicate that at pressures below 0.5 Torr the gas-phase heat transfer is negligible compared to heat conduction through the thermal actuator legs. As the pressure increases above 0.5 Torr, the gas-phase heat transfer becomes more significant. At ambient pressures, gas-phase heat transfer drastically impacts the thermal performance. The measured and simulated temperature profiles are in qualitative agreement in the present study. Quantitative agreement between experimental and simulated temperature profiles requires accurate knowledge of temperature-dependent thermophysical properties, the device geometry, and the thermal accommodation coefficient.

More Details

Determination of thermal accommodation coefficients from heat transfer measurements between parallel plates

Trott, Wayne T.; Torczynski, J.R.; Gallis, Michail A.; Rader, Daniel J.; Castaneda, Jaime N.

Thermal accommodation coefficients have been derived for a variety of gas-surface combinations using an experimental apparatus developed to measure the pressure dependence of the conductive heat flux between parallel plates at unequal temperature separated by a gas-filled gap. The heat flux is inferred from temperature-difference measurements across the plates in a configuration where the plate temperatures are set with two carefully controlled thermal baths. Temperature-controlled shrouds provide for environmental isolation of the opposing test plates. Since the measured temperature differences in these experiments are very small (typically 0.3 C or less over the entire pressure range), high-precision thermistors are used to acquire the requisite temperature data. High-precision components have also been utilized on the other control and measurement subsystems in this apparatus, including system pressure, gas flow rate, plate alignment, and plate positions. The apparatus also includes the capability for in situ plasma cleaning of the installed test plates. Measured heat-flux results are used in a formula based on Direct Simulation Monte Carlo (DSMC) code calculations to determine the thermal accommodation coefficients. Thermal accommodation coefficients have been determined for three different gases (argon, nitrogen, helium) in contact with various surfaces. Materials include metals and alloys such as aluminum, gold, platinum, and 304 stainless steel. A number of materials important to fabrication of Micro Electro Mechanical Systems (MEMS) devices have also been examined. For most surfaces, coefficient values are near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Only slight differences in accommodation as a function of surface roughness have been seen. Surface contamination appears to have a more significant effect: argon plasma treatment has been observed to reduce thermal accommodation by as much as 0.10 for helium. Mixtures of argon and helium have also been examined, and the results have been compared to DSMC simulations incorporating thermal-accommodation values from single-species experiments.

More Details

Efficient DSMC collision-partner selection schemes

Gallis, Michail A.; Torczynski, J.R.

The effect of collision-partner selection schemes on the accuracy and the efficiency of the Direct Simulation Monte Carlo (DSMC) method of Bird is investigated. Several schemes to reduce the total discretization error as a function of the mean collision separation and the mean collision time are examined. These include the historically first sub-cell scheme, the more recent nearest-neighbor scheme, and various near-neighbor schemes, which are evaluated for their effect on the thermal conductivity for Fourier flow. Their convergence characteristics as a function of spatial and temporal discretization and the number of simulators per cell are compared to the convergence characteristics of the sophisticated and standard DSMC algorithms. Improved performance is obtained if the population from which possible collision partners are selected is an appropriate fraction of the population of the cell.

More Details

Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows

Gallis, Michail A.; Bond, Ryan B.; Torczynski, J.R.

A recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates is assessed for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological nonequilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, significant differences can be found. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

More Details

Efficient DSMC collision-partner selection schemes

Gallis, Michail A.; Torczynski, J.R.

The effect of collision-partner selection schemes on the accuracy and the efficiency of the Direct Simulation Monte Carlo (DSMC) method of Bird is investigated. Several schemes to reduce the total discretization error as a function of the mean collision separation and the mean collision time are examined. These include the historically first sub-cell scheme, the more recent nearest-neighbor scheme, and various near-neighbor schemes, which are evaluated for their effect on the thermal conductivity for Fourier flow. Their convergence characteristics as a function of spatial and temporal discretization and the number of simulators per cell are compared to the convergence characteristics of the sophisticated and standard DSMC algorithms. Improved performance is obtained if the population from which possible collision partners are selected is an appropriate fraction of the population of the cell.

More Details

DSMC predictions of non-equilibrium reaction rates

Gallis, Michail A.; Bond, Ryan B.; Torczynski, J.R.

A set of Direct Simulation Monte Carlo (DSMC) chemical-reaction models recently proposed by Bird and based solely on the collision energy and the vibrational energy levels of the species involved is applied to calculate nonequilibrium chemical-reaction rates for atmospheric reactions in hypersonic flows. The DSMC non-equilibrium model predictions are in good agreement with theoretical models and experimental measurements. The observed agreement provides strong evidence that modeling chemical reactions using only the collision energy and the vibrational energy levels provides an accurate method for predicting non-equilibrium chemical-reaction rates.

More Details

Computational investigation of thermal gas separation for CO2 capture

Torczynski, J.R.; Gallis, Michail A.; Brooks, Carlton F.; Brady, Patrick V.; Bryan, Charles R.

This report summarizes the work completed under the Laboratory Directed Research and Development (LDRD) project 09-1351, 'Computational Investigation of Thermal Gas Separation for CO{sub 2} Capture'. Thermal gas separation for a binary mixture of carbon dioxide and nitrogen is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Molecular models for nitrogen and carbon dioxide are developed, implemented, compared to theoretical results, and compared to several experimental thermophysical properties. The molecular models include three translational modes, two fully excited rotational modes, and vibrational modes, whose degree of excitation depends on the temperature. Nitrogen has one vibrational mode, and carbon dioxide has four vibrational modes (two of which are degenerate). These models are used to perform a parameter study for mixtures of carbon dioxide and nitrogen confined between parallel walls over realistic ranges of gas temperatures and nominal concentrations of carbon dioxide. The degree of thermal separation predicted by DSMC is slightly higher than experimental values and is sensitive to the details of the molecular models.

More Details
Results 101–125 of 185
Results 101–125 of 185