Bright, intense x-ray sources with extreme plasma parameters (micropinch plasmas) have previously been characterized at 0.1-0.4 MA, but the scaling of such sources at higher current is poorly understood. The x-ray source size and radiation power of 1 MA X pinches were studied as a function of wire material (Al, Ti, Mo, and W) and number (1-, 2-, 8-, 32-, and 64-wire configurations). The smallest bright spots observed were from 32-wire tungsten X pinches, which produced {le} 11-16 {micro}m, {approx}2 J, 1-10 GW sources of 3-5 keV radiation.
Planar wire arrays are studied at 3-6 MA on the Saturn pulsed power generator as potential drivers of compact hohlraums for inertial confinement fusion studies. Comparison with zero-dimensional modeling suggests that there is significant trailing mass. The modeled energy coupled from the generator cannot generally explain the energy in the main x-ray pulse. Preliminary comparison at 1-6 MA indicates sub-quadratic scaling of x-ray power in a manner similar to compact cylindrical wire arrays. Time-resolved pinhole images are used to study the implosion dynamics.
We present on the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. μg-scale shell perturbations Δm' arising from multiple, 10–50 μm-diameter, hollow SiO2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Finally, simulations compare well with observation, whence it is corroborated that Δm' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10–20 μm tubes will negligibly affect fusion yield on a full-ignition facility.