G3P3 Panel: Technoeconomic and Scaling Considerations for Gen3 Particle Technology
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the ASME 2021 15th International Conference on Energy Sustainability, ES 2021
Falling particle receiver (FPR) systems are a rapidly developing technology for concentrating solar power applications. Solid particles are used as both the heat transfer fluid and system thermal energy storage media. Through the direct irradiation of the solid particles, flux and temperature limitations of tube-bundle receives can be overcome, leading to higher operating temperatures and energy conversion efficiencies. Candidate particles for FPR systems must be resistant to changes in optical properties during long term exposure to high temperatures and thermal cycling using highly concentrated solar irradiance. Five candidate particles, CARBOBEAD HSP 40/70, CARBOBEAD CP 40/100, including three novel particles, CARBOBEAD MAX HD 35, CARBOBEAD HD 350, and WanLi Diamond Black, were tested using simulated solar flux cycling and tube furnace thermal aging. Each particle candidate was exposed for 10 000 cycles (simulating the exposure of a 30-year lifetime) using a shutter to attenuate the solar simulator flux. Feedback from a pyrometer temperature measurement of the irradiated particle surface was used to control the maximum temperatures of 775 °C and 975 °C. Particle solar-weighted absorptivity and emissivity were measured at 2000 cycle intervals. Particle thermal degradation was also studied by heating particles to 800 °C, 900 °C, and 1000 °C for 300 hours in a tube furnace purged with bottled unpurified air. Here particle absorptivity and emissivity were measured at 100-hour intervals. Measurements taken after irradiance cycling and thermal aging were compared to measurements taken from as-received particles. WanLi Diamond Black particles had the highest initial value for solar weighted absorptance, 96%, but degraded up to 4% in irradiance cycling and 6% in thermal aging. CARBOBEAD HSP 40/70 particles currently in use in the prototype FPR at the National Solar Thermal Test Facility had an initial value of 95% solar absorptance with up to a 1% drop after irradiance cycling and 4% drop after 1000 °C thermal aging.
Proceedings of the ASME 2021 15th International Conference on Energy Sustainability, ES 2021
The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories is conducting research on a Generation 3 Particle Pilot Plant (G3P3) that uses falling sandlike particles as the heat transfer medium. G3P3 proposes a system with 6 MWh of thermal energy storage in cylindrical bins made of steel that will be insulated internally using multiple layers of refractory materials[1]. The refractory materials can be applied by stacking pre-cast panels in a cylindrical arrangement or by spraying refractory slurry to the walls (shotcrete). A study on the two methods determined that shotcrete would be the preferred method in order to minimize geometric tolerance issues in the pre-cast panels, improve repairability, and to more closely resemble commercial-scale construction methods. Testing and analysis was conducted which showed shotcrete refractories could be applied with minimal damage and acceptable heat loss.
Proceedings of the ASME 2021 15th International Conference on Energy Sustainability, ES 2021
This paper describes the development of a facility for evaluating the performance of small-scale particle-to-sCO2 heat exchangers, which includes an isobaric sCO2 flow loop and an electrically heated particle flow loop. The particle flow loop is capable of delivering up to 60 kW of heat at a temperature of 600°C and flow rate of 0.4 kg/s. The loop was developed to facilitate long duration off-sun testing of small prototype heat exchangers to produce model validation data at steady-state operating conditions. Lessons learned on instrumentation, control, and system integration from prior testing of larger heat exchangers with solar thermal input were used to guide the design of the test facility. In addition, the development and testing of a novel 20-kWt moving packed-bed particle-to-sCO2 heat exchanger using the integrated flow loops is reported. The prototype heat exchanger implements many novel features for increasing thermal performance and reducing pressure drop which include integral porting of the sCO2 flow, unique bond/braze manufacturing, narrow plate spacing, and pure counter-flow arrangement. The experimental data collected for the prototype heat exchanger was compared to model predictions to verify the sizing, thermal performance, and pressure drop which will be extended to multi-megawatt heat exchanger designs in the future.
This report describes the design, development, and testing of a prototype 100 kWt particle-to-supercritical CO2 (sCO2) heat exchanger. An analytic hierarchy process was implemented to compare and evaluate alternative heat-exchanger designs (fluidized bed, shell-and-plate moving packed bed, and shell-and-tube moving packed bed) that could meet the high pressure (≥ 20 MPa) and high temperature (≥ 700 °C) operational requirements associated with sCO2 power cycles. Cost, heat-transfer coefficient, structural reliability, manufacturability, parasitics and heat losses, scalability, compatibility, erosion and corrosion, transient operation, and inspection ease were considered in the evaluation. A 100 kWt shell-and-plate design was selected for construction and integration with Sandia’s falling particle receiver system that heats the particles using concentrated sunlight. Sandia worked with industry to design and construct the moving packed-bed shell-and-plate heat exchanger. Tests were performed to evaluate its performance using both electrical heating and concentrated sunlight to heat the particles. Overall heat transfer coefficients at off-design conditions (reduced operating temperatures and only three stainless steel banks in the counter-crossflow heat exchanger) were measured to be approximately ~25 - 70 W/m2-K, significantly lower than simulated values of >100 W/m2-K. Tests using the falling particle receiver to heat the particles with concentrated sunlight yielded overall heat transfer coefficients of ~35 – 80 W/m2-K with four banks (including a nickel-alloy bank above the three stainless steel banks). The overall heat transfer coefficient was observed to decrease with increasing particle inlet temperatures, which contrasted the results of simulations that showed an increase in heat transfer coefficient with temperature due to increased effective particle-bed thermal conductivity from radiation. The likely cause of the discrepancy was particle-flow maldistributions and funnel flow within the heat exchanger caused by internal ledges and cross-bracing, which could have been exacerbated by increased particle-wall friction at higher temperatures. Additional heat loss at higher temperatures may also contribute to a lower overall heat-transfer coefficient. Design challenges including pressure drop, particle and sCO2 flow maldistribution, and reduced heat transfer coefficient are discussed with approaches for mitigation in future designs. Lessons learned regarding instrumentation, performance characterization, and operation of particle components and sCO2 flow loops are also discussed. Finally, a 200 MWt commercial-scale shell-and-plate heat-exchanger design based on the concepts investigated in this report is proposed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.