The key objectives of this project were to increase meaningful stakeholder engagement in photovoltaic performance modeling and reliability areas. We did this by hosting six workshop over the past three years, giving conference and workshop presentations and contributing to technical standards committees. Our efforts have made positive contributions by increasing the sharing of information and best practices and by creating and sustaining a technical community in PV Performance Modeling. This community has worked together over the past three years and has improved its practice and decreased performance modeling uncertainties.
This project has three main objectives: (1) to field and collect performance data from bifacial PV systems and share this information with the stakeholder community; (2) to develop and validate bifacial performance models and deployment guides that will allow users to accurately predict and assess the use of bifacial PV as compared with monofacial technologies and (3) to help develop international power rating standards for bifacial PV modules.
Started in 2016, the PV Lifetime Project is measuring PV module and system degradation profiles over time with the aim of distinguishing different module types and technology. Outdoor energy monitoring in different climates is supplemented with regular testing under repeatable test conditions indoors. The focus is on the PV module, as well as other hardware components (junction boxes, bypass diodes, and module-level electronics) attached to it. Hardware is installed at Sandia National Laboratories in New Mexico, at the National Renewable Energy Laboratory in Colorado, and at the University of Central Florida. The systems are continuously monitored for DC current and voltage, as well as periodic I-V curves at the string level. In the future, once degradation trends have been identified with more certainty, results will be made available to the public online. This data is expected to enable an increase in the accuracy and precision of degradation profiles used in yield assessments that support investments made in new PV plants. Current practice is to assume that degradation is constant over the life of the system. Forthcoming results in the next few years will help to determine whether this assumption is still appropriate.
In this paper, we present the effect of installation parameters (tilt angle, height above ground, and albedo) on the bifacial gain and energy yield of three south-facing photovoltaic (PV) system configurations: a single module, a row of five modules, and five rows of five modules utilizing RADIANCE-based ray tracing model. We show that height and albedo have a direct impact on the performance of bifacial systems. However, the impact of the tilt angle is more complicated. Seasonal optimum tilt angles are dependent on parameters such as height, albedo, size of the system, weather conditions, and time of the year. For a single bifacial module installed in Albuquerque, NM, USA (35 °N) with a reasonable clearance (∼1 m) from the ground, the seasonal optimum tilt angle is lowest (∼5°) for the summer solstice and highest (∼65°) for the winter solstice. For larger systems, seasonal optimum tilt angles are usually higher and can be up to 20° greater than that for a single module system. Annual simulations also indicate that for larger fixed-tilt systems installed on a highly reflective ground (such as snow or a white roofing material with an albedo of ∼81%), the optimum tilt angle is higher than the optimum angle of the smaller size systems. We also show that modules in larger scale systems generate lower energy due to horizon blocking and large shadowing area cast by the modules on the ground. For albedo of 21%, the center module in a large array generates up to 7% less energy than a single bifacial module. To validate our model, we utilize measured data from Sandia National Laboratories' fixed-tilt bifacial PV testbed and compare it with our simulations.