Publications

Results 1–25 of 30

Search results

Jump to search filters

MD simulations of chemically reacting networks : analysis of permanent set

Curro, John G.; Budzien, Joanne L.; Grest, Gary S.; Thompson, Aidan P.

The Independent Network Model (INM) has proven to be a useful tool for understanding the development of permanent set in strained elastomers. Our previous work showed the applicability of the INM to our simulations of polymer systems crosslinking in strained states. This study looks at the INM applied to theoretical models incorporating entanglement effects, including Flory's constrained junction model and more recent tube models. The effect of entanglements has been treated as a separate network formed at gelation, with additional curing treated as traditional phantom contributions. Theoretical predictions are compared with large-scale molecular dynamics simulations.

More Details

Short-range helical ordering of isotactic vinyl polymers in the liquid state

Curro, John G.

Wide-angle x-ray scattering measurements on various vinyl polymer melts show that the main amorphous peak (at k {approx} 1.5 A{sup -1}) in the structure factor initially broadens, and then forms a 'pre-peak' that shifts to lower k as the size of the pendant group increases. To investigate this behavior we performed self-consistent PRISM calculations on isotactic polypropylene and polystyrene liquids. Good qualitative agreement was seen for the theoretical structure factors with scattering data. Analysis of the torsional angle distribution shows a significant amount of short-range helical content in the iPP and iPS melts. At 450 K the average number of consecutive trans/gauche pairs along the chain backbone was significantly higher than for a random distribution of torsional angles. The theory indicates that the location of the pre-peak is a measure of the helix-helix correlation distance or helix 'thickness'.

More Details

Hybrid two-chain simulation and integral equation theory : application to polyethylene liquids

Curro, John G.

We present results from a hybrid simulation and integral equation approach to the calculation of polymer melt properties. The simulation consists of explicit Monte Carlo (MC) sampling of two polymer molecules, where the effect of the surrounding chains is accounted for by an HNC solvation potential. The solvation potential is determined from the Polymer Reference Interaction Site Model (PRISM) as a functional of the pair correlation function from simulation. This hybrid two-chain MC-PRISM approach was carried out on liquids of polyethylene chains of 24 and 66 CH{sub 2} units. The results are compared with MD simulation and self-consistent PRISM-PY theory under the same conditions, revealing that the two-chain calculation is close to MD, and able to overcome the defects of the PRISM-PY closure and predict more accurate structures of the liquid at both short and long range. The direct correlation function, for instance, has a tail at longer range which is consistent with MD simulation and avoids the short-range assumptions in PRISM-PY theory. As a result, the self-consistent two-chain MC-PRISM calculation predicts an isothermal compressibility closer to the MD results.

More Details

Constitutive models for rubber networks undergoing simultaneous crosslinking and scission

Budzien, Joanne L.; Lo, Chi S.; Curro, John G.; Thompson, Aidan P.; Grest, Gary S.

Constitutive models for chemically reacting networks are formulated based on a generalization of the independent network hypothesis. These models account for the coupling between chemical reaction and strain histories, and have been tested by comparison with microscopic molecular dynamics simulations. An essential feature of these models is the introduction of stress transfer functions that describe the interdependence between crosslinks formed and broken at various strains. Efforts are underway to implement these constitutive models into the finite element code Adagio. Preliminary results are shown that illustrate the effects of changing crosslinking and scission rates and history.

More Details

Density functional theory and molecular dynamics simulation of poly(dimethylsiloxane) melts near silica surfaces

Proposed for publication in Macromolecules.

Curro, John G.; Frischknecht, Amalie F.

Classical density functional theory (DFT) is applied to study properties of fully detailed, realistic models of poly(dimethylsiloxane) liquids near silica surfaces and compared to results from molecular dynamics simulations. In solving the DFT equations, the direct correlation functions are obtained from the polymer reference interaction site model (PRISM) theory for the repulsive parts of the interatomic interactions, and the attractions are treated via the random-phase approximation (RPA). Good agreement between density profiles calculated from DFT and from the simulations is obtained with empirical scaling of the direct correlation functions. Separate scaling factors are required for the PRISM and RPA parts of the direct correlation functions. Theoretical predictions of stress profiles, normal pressure, and surface tensions are also in reasonable agreement with simulation results.

More Details

Solution behavior of PEO : the ultimate biocompatible polymer

Curro, John G.; Frischknecht, Amalie F.

Poly(ethylene oxide) (PEO) is the quintessential biocompatible polymer. Due to its ability to form hydrogen bonds, it is soluble in water, and yet is uncharged and relatively inert. It is being investigated for use in a wide range of biomedical and biotechnical applications, including the prevention of protein adhesion (biofouling), controlled drug delivery, and tissue scaffolds. PEO has also been proposed for use in novel polymer hydrogel nanocomposites with superior mechanical properties. However, the phase behavior of PEO in water is highly anomalous and is not addressed by current theories of polymer solutions. The effective interactions between PEO and water are very concentration dependent, unlike other polymer/solvent systems, due to water-water and water-PEO hydrogen bonds. An understanding of this anomalous behavior requires a careful examination of PEO liquids and solutions on the molecular level. We performed massively parallel molecular dynamics simulations and self-consistent Polymer Reference Interaction Site Model (PRISM) calculations on PEO liquids. We also initiated MD studies on PEO/water solutions with and without an applied electric field. This work is summarized in three parts devoted to: (1) A comparison of MD simulations, theory and experiment on PEO liquids; (2) The implementation of water potentials into the LAMMPS MD code; and (3) A theoretical analysis of the effect of an applied electric field on the phase diagram of polymer solutions.

More Details

Computational modeling of the temperature-induced structural changes of tethered Poly(N-isopropylacrylamide) with self-consistent field theory

Proposed for publication in Macromolecules.

Curro, John G.

We modeled the effects of temperature, degree of polymerization, and surface coverage on the equilibrium structure of tethered poly(N-isopropylacrylamide) chains immersed in water. We employed a numerical self-consistent field theory where the experimental phase diagram was used as input to the theory. At low temperatures, the composition profiles are approximately parabolic and extend into the solvent. In contrast, at temperatures above the LCST of the bulk solution, the polymer profiles are collapsed near the surface. The layer thickness and the effective monomer fraction within the layer undergo what appears to be a first-order change at a temperature that depends on surface coverage and chain length. Our results suggest that as a result of the tethering constraint, the phase diagram becomes distorted relative to the bulk polymer solution and exhibits closed loop behavior. As a consequence, we find that the relative magnitude of the layer thickness change at 20 and 40 C is a nonmonotonic function of surface coverage, with a maximum that shifts to lower surface coverage as the chain length increases in qualitative agreement with experiment.

More Details

Self-assembly of polymers in confined geometrics

Curro, John G.

Athermal, tethered chains are modeled with Density Functional (DFT) theory for both the explicit solvent and continuum solvent cases. The structure of DFT is shown to reduce to Self-Consistent-Field (SCF) theory in the incompressible limit where there is symmetry between solvent and monomer, and to Single-Chain-Mean-Field (SCMF) theory in the continuum solvent limit. We show that by careful selection of the reference and ideal systems in DFT theory, self-consistent numerical solutions can be obtained, thereby avoiding the single chain Monte Carlo simulation in SCMF theory. On long length scales, excellent agreement is seen between the simplified DFT theory and Molecular Dynamics simulations of both continuum solvents and explicit-molecule solvents. In order to describe the structure of the polymer and solvent near the surface it is necessary to include compressibility effects and the nonlocality of the field.

More Details

Switchable Hydrophobic-Hydrophilic Surfaces

Bunker, B.C.; Huber, Dale L.; Kent, Michael S.; Yim, Hyun Y.; Curro, John G.; Manginell, Ronald P.; Mendez, Sergio M.

Tethered films of poly n-isopropylacrylamide (PNIPAM) films have been developed as materials that can be used to switch the chemistry of a surface in response to thermal activation. In water, PNIPAM exhibits a thermally-activated phase transition that is accompanied by significant changes in polymer volume, water contact angle, and protein adsorption characteristics. New synthesis routes have been developed to prepare PNIPAM films via in-situ polymerization on self-assembled monolayers. Swelling transitions in tethered films have been characterized using a wide range of techniques including surface plasmon resonance, attenuated total reflectance infrared spectroscopy, interfacial force microscopy, neutron reflectivity, and theoretical modeling. PNIPAM films have been deployed in integrated microfluidic systems. Switchable PNIPAM films have been investigated for a range of fluidic applications including fluid pumping via surface energy switching and switchable protein traps for pre-concentrating and separating proteins on microfluidic chips.

More Details

Molecular Self-Assembly

Curro, John G.; McCoy, John D.; Frischknecht, Amalie F.

This report is divided into two parts: a study of the glass transition in confined geometries, and formation mechanisms of block copolymer mesophases by solvent evaporation-induced self-assembly. The effect of geometrical confinement on the glass transition of polymers is a very important consideration for applications of polymers in nanotechnology applications. We hypothesize that the shift of the glass transition temperature of polymers in confined geometries can be attributed to the inhomogeneous density profile of the liquid. Accordingly, we assume that the glass temperature in the inhomogeneous state can be approximated by the Tg of a corresponding homogeneous, bulk polymer, but at a density equal to the average density of the inhomogeneous system. Simple models based on this hypothesis give results that are in remarkable agreement with experimental measurements of the glass transition of confined liquids. Evaporation-induced self-assembly (EISA) of block copolymers is a versatile process for producing novel, nanostructured materials and is the focus of much of the experimental work at Sandia in the Brinker group. In the EISA process, as the solvent preferentially evaporates from a cast film, two possible scenarios can occur: microphase separation or micellization of the block copolymers in solution. In the present investigation, we established the conditions that dictate which scenario takes place. Our approach makes use of scaling arguments to determine whether the overlap concentration c* occurs before or after the critical micelle concentration (CMC). These theoretical arguments are used to interpret recent experimental results of Yu and collaborators on EISA experiments on Silica/PS-PEO systems.

More Details

Self-consistent integral equation theory for polyolefins: Comparison to molecular dynamics simulations and X-ray scattering

Journal of Chemical Physics

Curro, John G.; Grest, Gary S.

The effect of polymer architecture on macroscopic properties were investigated using the self-consistent integral equation theory. Using several types of polyolefin polymers, the results obtained using the self consistent polymer reference interaction site model (PRISM) and molecular dynamics (MD) simulations were compared. The results from the two methods were then compared with experimental X ray scattering data.

More Details

Dynamical Properties of Polymers: Computational Modeling

Curro, John G.

The free volume distribution has been a qualitatively useful concept by which dynamical properties of polymers, such as the penetrant diffusion constant, viscosity, and glass transition temperature, could be correlated with static properties. In an effort to put this on a more quantitative footing, we define the free volume distribution as the probability of finding a spherical cavity of radius R in a polymer liquid. This is identical to the insertion probability in scaled particle theory, and is related to the chemical potential of hard spheres of radius R in a polymer in the Henry's law limit. We used the Polymer Reference Interaction Site Model (PRISM) theory to compute the free volume distribution of semiflexible polymer melts as a function of chain stiffness. Good agreement was found with the corresponding free volume distributions obtained from MD simulations. Surprisingly, the free volume distribution was insensitive to the chain stiffness, even though the single chain structure and the intermolecular pair correlation functions showed a strong dependence on chain stiffness. We also calculated the free volume distributions of polyisobutylene (PIB) and polyethylene (PE) at 298K and at elevated temperatures from PRISM theory. We found that PIB has more of its free volume distributed in smaller size cavities than for PE at the same temperature.

More Details

Mixing of Isotactic and Syndiotactic Polypropylenes in the Melt

Macromolecules

Curro, John G.

The miscibility of polypropylene (PP) melts in which the chains differ only in stereochemical composition has been investigated by two different procedures. One approach used detailed local information from a Monte Carlo simulation of a single chain, and the other approach takes this information from a rotational isomeric state model devised decades ago, for another purpose. The first approach uses PRISM theory to deduce the intermolecular packing in the polymer blend, while the second approach uses a Monte Carlo simulation of a coarse-grained representation of independent chains, expressed on a high-coordination lattice. Both approaches find a positive energy change upon mixing isotactic PP (iPP) and syndiotactic polypropylene (sPP) chains in the melt. This conclusion is qualitatively consistent with observations published recently by Muelhaupt and coworkers. The size of the energy chain on mixing is smaller in the MC/PRISM approach than in the RIS/MC simulation, with the smaller energy change being in better agreement with the experiment. The RIS/MC simulation finds no demixing for iPP and atactic polypropylene (aPP) in the melt, consistent with several experimental observations in the literature. The demixing of the iPP/sPP blend may arise from attractive interactions in the sPP melt that are disrupted when the sPP chains are diluted with aPP or iPP chains.

More Details

Investigation of the impact of cleaning on the adhesive bond and the process implications

Emerson, John A.; Guess, Tommy R.; Adkins, Carol L.; Curro, John G.; Reedy, Earl D.; Lopez, Edwin P.; Lemke, Paul A.

While surface cleaning is the most common process step in DOE manufacturing operations, the link between a successful adhesive bond and the surface clean performed before adhesion is not well understood. An innovative approach that combines computer modeling expertise, fracture mechanics understanding, and cleaning experience to address how to achieve a good adhesive bond is discussed here to develop a capability that would result in reduced cleaning development time and testing, improved bonds, improved manufacturability, and even an understanding that leads to improved aging. A simulation modeling technique, polymer reference interaction site model applied near wall (Wall PRISM), provided the capability to include contaminants on the surface. Calculations determined an approximately 8% reduction in the work of adhesion for 1% by weight of ethanol contamination on the structure of a silicone adhesive near a surface. The demonstration of repeatable coatings and quantitative analysis of the surface for deposition of controlled amounts of contamination (hexadecane and mineral oil) was based on three deposition methods. The effect of the cleaning process used on interfacial toughness was determined. The measured interfacial toughness of samples with a Brulin cleaned sandblasted aluminum surface was found to be {approximately} 15% greater than that with a TCE cleaned aluminum surface. The sensitivity of measured fracture toughness to various test conditions determined that both interfacial toughness and interface corner toughness depended strongly on surface roughness. The work of adhesion value for silicone/silicone interface was determined by a contact mechanics technique known as the JKR method. Correlation with fracture data has allowed a better understanding between interfacial fracture parameters and surface energy.

More Details

Density functional theory of simple polymers in a slit pore: 3. Surface tension

The Journal of Chemical Physics

Curro, John G.; Van Swol, Frank

In a previous study of tangent site chains near a surface, the inhomogeneous density profiles were found through Density Functional theory. In the current study, the surface tensions of these systems are found from the results of the previous study through a thermodynamic integration. The calculated surface tensions are then compared to those found directly through computer simulation. Both the surface tension and surface excess for polymeric systems are shown to qualitatively differ from those of atomic systems, although certain similarities are seen at high densities.

More Details

Final report for the designed synthesis of controlled degradative materials LDRD

Loy, Douglas A.; Ulibarri, Tamara A.; Curro, John G.; Wiemann, Dora K.; Guess, Tommy R.

The main goal of this research was to develop degradable systems either by developing weaklink-containing polymers or identifying commercial polymeric systems which are easily degraded. In both cases, the degradation method involves environmentally friendly chemistries. The weaklinks are easily degradable fragments which are introduced either randomly or regularly in the polymer backbone or as crosslinking sites to make high molecular weight systems via branching. The authors targeted three general application areas: (1) non-lethal deterrents, (2) removable encapsulants, and (3) readily recyclable/environmentally friendly polymers for structural and thin film applications.

More Details

The diffusion of simple penetrants in tangent site polymer melts

Journal of Chemical Physics

Curro, John G.

The diffuse behavior of penetrants in simple polymer melts was investigated by molecular dynamics simulation. For the case where the polymer melt consisted of pearl-necklace chains, the diffusive behavior of the loose pearl penetrants was seen to be qualitatively different than would be expected in realistic models of polymer melts. In particular, there was little or no "non-Fickian" region; the variation of the diffusion coefficient with the penetrant diameter was what one would expect for diffusion through small molecular liquids; and, finally, the long time tail of the velocity autocorrelation displayed a "-3/2" power law form, also as in the small molecular liquid case. When the chains' backbone motion was further constrained by the introduction of a bond angle potential, the qualitative nature of the penetrant diffusion became more "polymer-like." A non-Fickian region developed; the diffusion coefficient varied more rapidly with penetrant diameter; and the velocity autocorrelation function developed a "-5/2" power law tail. © 1999 American Institute of Physics.

More Details

Integrated Quantum/Classical Modeling of Hydrogenic Materials

Curro, John G.; Van Swol, Frank; Fye, Richard M.

Path integral Monte Carlo simulations and calculations were performed on molecular hydrogen liquids. The equation-of-state, internal energies, and vapor liquid phase diagrams from simulation were found to be in quantitative agreement with experiments. Analytical calculations were performed on,H2 liquids using integral equation methods to study the degree of localization of the hydrogen molecules. Very little self-trapping or localization was found as a function of temperature and density. Good qualitative agreement was found between the integral equation calculations and the quantum Monte Carlo simulations for the radius of gyration of the hydrogen molecules. Path integral simulations were also performed on molecular hydrogen on graphite surfaces, slit pores, and in carbon nanotubes. Significant quantum effects on the adsorption of hydrogen were observed.

More Details

Density Functional Theory of Simple Polymers in a Slit Pore: 2. The Role of Compressibility and Field Type

The Journal of Chemical Physics

Curro, John G.; Weinhold, Jeffrey D.

Simple tangent, hard site chains near a hard wall are modeled with a Density Functional (DF) theory that uses the direct correlation function, c(r), as its ''input''. Two aspects of this DF theory are focused upon: (1) the consequences of variations in c(r)'s detailed form; and (2) the correct way to introduce c(r) into the DF formalism. The most important aspect of c(r) is found to be its integrated value, {cflx c}(0). Indeed, it appears that, for fixed {cflx c}(0), all reasonable guesses of the detailed shape of c(r) result in surprisingly similar density distributions, {rho}(r). Of course, the more accurate the c(r), the better the {rho}(r). As long as the length scale introduced by c(r) is roughly the hard site diameter and as long as the solution remains liquid-like, the {rho}(r) is found to be in good agreement with simulation results. The c(r) is used in DF theory to calculate the medium-induced-potential, U{sub M}(r) from the density distribution, {rho}(r). The form of U{sub M}(r) can be chosen to be one of a number of different forms. It is found that the forms for U{sub M}(r), which yield the most accurate results for the wall problem, are also those which were suggested as accurate in previous, related studies.

More Details
Results 1–25 of 30
Results 1–25 of 30