Publications

Results 1–25 of 75

Search results

Jump to search filters

Futures for electrochromic windows on high performance houses in arid, cold climates

Energy and Buildings

Villa, Daniel L.; Hahn, Nathan T.; Grey, John K.; Pavich, Frances

This study investigates high performance electrochromic windows used on a passive house and residential dwelling to IECC 2021 (i.e., IECC dwelling). In the lab, the electrochromic film switches transmitted solar heat gain coefficient (SHGC) from 0.09 to 0.7 and visible transmittance from 0.15 to 0.82 with power consumption of 1.23 W/m2 during switching times less than 3 minutes. We extrapolate these results to a window assembly. Building energy models of the houses were evaluated in Santa Fe, New Mexico. A Monte Carlo analysis for 2020, 2040, 2060, and 2080 was conducted for Shared Socioeconomic Pathways 2-4.5, 3-7.0, and 5-8.5. Cases with and without the electrochromic windows and with and without electricity were used to determine energy use intensity and hours beyond thermal safety thresholds. The passive house showed 1.3-3.1% mean energy savings and the IECC dwelling 4.4-5.1% with electrochromic efficiency benefits growing into the future for both cases. Even so, overall savings decrease into the future for the passive house, due to growth in cooling load being dominant, conversely overall energy savings increase into the future for the IECC dwelling due to heating loads being dominant. For thermal resilience, the passive house exhibited a mean percent decrease of 0.02-0.31% hours in the extreme caution (i.e., > 32.2 ∘C, ≤ 39.4 ∘C) range while the IECC dwelling exhibited 0.38-4.38%. The study therefore shows that electrochromic windows will have smaller benefits for the passive house in comparison to the IECC dwelling. The relationship between electrochromic windows is shown to have a complex relationship between house efficiency and climate change by these results.

More Details

Multi-scenario Extreme Weather Simulator application to heat waves: Ko’olauloa community resilience hub

Science and Technology for the Built Environment

Villa, Daniel L.; Mammoli, Andrea A.; Bianchi, Carlo; Lee, Sang H.; Carvallo, Juan P.

Heat waves are increasing in severity, duration, and frequency. The Multi-Scenario Extreme Weather Simulator (MEWS) models this using historical data, climate model outputs, and heat wave multipliers. In this study, MEWS is applied for planning of a community resilience hub in Hau’ula, Hawaii. The hub will have normal operations and resilience operations modes. Both these modes were modeled using EnergyPlus. The resilience operations mode includes cutting off air conditioning for many spaces to decrease power requirements during emergencies. Results were simulated for 300 future weather files generated by MEWS for 2020, 2040, 2060, and 2080. Shared socioeconomic pathways 2–4.5, 3–7.0 and 5–8.5 were used. The resilience operations mode results show two to six times increase of hours of exceedance beyond 32.2 °C from present conditions, depending on climate scenario and future year. The resulting decrease in thermal resilience enables an average decrease of energy use intensity of 26% with little sensitivity to climate change. The decreased thermal resilience predicted in the future is undesirable, but was not severe enough to require a more energy-intensive resilience mode. Instead, planning is needed to assure vulnerable individuals are given prioritized access to air-conditioned parts of the hub if worst-case heat waves occur.

More Details

A stochastic model of future extreme temperature events for infrastructure analysis

Environmental Modelling and Software

Villa, Daniel L.; Schostek, Tyler; Govertsen, Krissy; Macmillan, Madeline

Applying extreme temperature events for future conditions is not straightforward for infrastructure resilience analyses. This work introduces a stochastic model that fills this gap. The model uses at least 50 years of daily extreme temperature records, climate normals with 10%–90% confidence intervals, and shifts/offsets for increased frequency and intensity of heat wave events. Intensity and frequency are shifted based on surface temperature anomaly from 1850–1900 for 32 models from CMIP6. A case study for Worcester, Massachusetts passed 85% of cases using the two-sided Kolmogorov–Smirnov p-value test with 95% confidence for both temperature and duration. Future shifts for several climate scenarios to 2020, 2040, 2060, and 2080 had acceptable errors between the shifted model and 10- and 50-year extreme temperature event thresholds with the largest error being 2.67°C. The model is likely to be flexible enough for other patterns of extreme weather such as extreme precipitation and hurricanes.

More Details

Reducing microgrid availability to reduce costs for coastal Puerto Rican communities

Science and Technology for the Built Environment

Villa, Daniel L.; Quiroz, Jimmy E.

Renewable microgrids are sustainable, resilient solutions to mitigate and adapt to climate change. Making electric loads nearly 100% available (i.e., power remains on) during outages increases cost. Near 100% availability is required when human life or high-cost assets are involved, but availability can be reduced for less consequential loads leading to lower costs. This study analyses costs for photo-voltaic and lithium-ion battery microgrids with availability ranging from 0–99%. We develop a methodology to analyse three Puerto Rican coastal communities. We consider power outage effects for hurricanes, earthquakes, and everyday outages. The results show cost versus availability from 0–99%. There is 27–31% cost reduction at 80% availability in comparison to 99% availability. A regression model of microgrid availability versus three ratios: 1) the annual generation to demand ratio, 2) storage to interruption energy ratio, and 3) peak storage to load ratio produced a coefficient of determination of 0.99949 with 70% of the data used for training and 30% for testing. The results can therefore be extended to other coastal Puerto Rican communities of varying sizes that have ratios within the ranges analysed in this study. This can empower decision makers to rapidly analyse designs that have availabilities well below 100%.

More Details

Microgrid Tiered Circuits Effects for a Planned Housing Community in Puerto Rico

ASHRAE Transactions

Villa, Daniel L.; Quiroz, Jimmy E.; O'Neill-Carrillo, Efrain; Jeffers, Robert

Puerto Rico faced a double strike from hurricanes Irma and Maria in 2017. The resulting damage required a comprehensive rebuild of electric infrastructure. There are plans and pilot projects to rebuild with microgrids to increase resilience. This paper provides a techno-economic analysis technique and case study of a potential future community in Puerto Rico that combines probabilistic microgrid design analysis with tiered circuits in building energy modeling. Tiered circuits in buildings allow electric load reduction via remote disconnection of non-critiñl circuits during an emergency. When coupled to a microgrid, tiered circuitry can reduce the chances of a microgrid's storage and generation resources being depleted. The analysis technique is applied to show 1) Approximate cost savings due to a tiered circuit structure and 2) Approximate cost savings gained by simultaneously considering resilience and sustainability constraints in the microgrid optimization. The analysis technique uses a resistive capacitive thermal model with load profiles for four tiers (tier 1-3 and non-critical loads). Three analyses were conducted using: 1) open-source software called Tiered Energy in Buildings and 2) the Microgrid Design Toolkit. For a fossil fuel based microgrid 30% of the total microgrid costs of 1.18 million USD were calculated where the non-tiered case keeps all loads 99.9% available and the tiered case keeps tier 1 at 99.9%, tier 2 at 95%, tier 3 at 80% availability, with no requirement on non-critical loads. The same comparison for a sustainable microgrid showed 8% cost savings on a 5.10 million USD microgrid due to tiered circuits. The results also showed 6-7% cost savings when our analysis technique optimizes sustainability and resilience simultaneously in comparison to doing microgrid resilience analysis and renewables net present value analysis independently. Though highly specific to our case study, similar assessments using our analysis technique can elucidate value of tiered circuits and simultaneous consideration of sustainability and resilience in other locations.

More Details

The Multi-scenario Extreme Weather Simulator: Energy Resilience for Mission Assurance

Villa, Daniel L.; Schostek, Tyler; Bianchi, Carlo; Macmillan, Madeline; Carvallo, Juan P.

The Multi-scenario extreme weather simulator (MEWS) is a stochastic weather generation tool. The MEWS algorithm uses 50 or more years of National Oceanic and Atmospheric Association (NOAA) daily summaries [1] for maximum and minimum temperature and NOAA climate norms [2] to calculate historical heat wave and cold snap statistics. The algorithm takes these statistics and shifts them according to multiplication factors provided in the Intergovernmental Panel on Climate Change (IPCC) physical basis technical summary [3] for heat waves.

More Details

Multi-scenario Extreme Weather Simulator Application to Heat Waves

ASHRAE and IBPSA-USA Building Simulation Conference

Villa, Daniel L.; Carvallo, Juan P.; Bianchi, Carlo; Lee, Sang H.

Heat waves are increasing in severity, duration, and frequency, making historical weather patterns insufficient for assessments of building resilience. This work introduces a stochastic weather generator called the multi-scenario extreme weather simulator (MEWS) that produces credible future heat waves. MEWS calculates statistical parameters from historical weather data and then shifts them using climate projections of increasing severity and frequency. MEWS is demonstrated using the EnergyPlus medium office prototype model for climate zone 4B using five climate scenarios to 2060. The results show how changes in climate and heat waves affect electric loads, peak loads, and thermal comfort with uncertainty.

More Details

100% Carbon-Free Electricity for Sandia NM and KAFB Using Concentrating Solar Power (CSP) (SAND Report)

Ho, Clifford K.; Bush, Hagan E.; Villa, Daniel L.; Rinaldi, Nicole; Schroeder, Nathaniel R.; Sment, Jeremy N.I.

This report provides a design study to produce 100% carbon-free electricity for Sandia NM and Kirtland Air Force Base (KAFB) using concentrating solar power (CSP). Annual electricity requirements for both Sandia and KAFB are presented, along with specific load centers that consume a significant and continuous amount of energy. CSP plant designs of 50 MW and 100 MW are then discussed to meet the needs of Sandia NM and the combined electrical needs of both Sandia NM and KAFB. Probabilistic modeling is performed to evaluate inherent uncertainties in performance and cost parameters on total construction costs and the levelized cost of electricity. Total overnight construction costs are expected to range between ~$300M - $400M for the 50 MW CSP plant and between ~$500M - $800M for the 100 MW plant. Annual operations and maintenance (O&M) costs are estimated together with potential offsets in electrical costs and CO2 emissions. Other considerations such as interconnections, land use and permitting, funding options, and potential agreements and partnerships with Public Service Company of New Mexico (PNM), Western Area Power Administration (WAPA), and other entities are also discussed.

More Details
Results 1–25 of 75
Results 1–25 of 75