Publications

Results 51–75 of 161

Search results

Jump to search filters

Development of "dropkinson" Bar for Intermediate Strain-rate Testing

EPJ Web of Conferences

Song, Bo S.; Sanborn, Brett S.; Heister, Jack D.; Everett, Randy L.; Martinez, Thomas L.; Groves, Gary E.; Johnson, Evan P.; Kenney, Dennis J.; Knight, Marlene E.; Spletzer, Matthew A.

A new apparatus-"Dropkinson Bar"-has been successfully developed for material property characterization at intermediate strain rates. This Dropkinson bar combines a drop table and a Hopkinson bar. The drop table is used to generate a relatively long and stable low-speed impact to the tensile specimen, whereas the Hopkinson bar principle is applied to measure the load history with accounting for inertia effects in the system. In addition, pulse shaping techniques were applied to the Dropkinson bar to facilitate uniform stress and strain as well as constant strain rate in the specimen. The Dropkinson bar was used to characterize 304L stainless steel and 6061-T6 aluminum at a strain rate of ~600 s-1. The experimental data obtained from the Dropkinson bar tests were compared with the data obtained from conventional Kolsky tensile bar tests of the same material at similar strain rates. Both sets of experimental results were consistent, showing the newly developed Dropkinson bar apparatus is reliable and repeatable.

More Details

Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

International Journal of Impact Engineering

Song, Bo S.; Sanborn, Brett S.

In this study, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that either constant engineering or constant true strain rate is attained during the experiment.

More Details

Improved experimental and diagnostic techniques for dynamic tensile stress-strain measurement with a Kolsky tension bar

Measurement Science and Technology

Song, Bo S.; Qiu, Ying; Loeffler, Colin M.; Nie, Xu

Kolsky tension bar experiments were improved for dynamic tensile stress-strain measurements with higher fidelity and minimal uncertainties. The difficulties associated with specimen gripping, relatively short gage section, and geometric discontinuity at the bar ends all compromise the accuracy of the traditional strain measurement method in a Kolsky tension bar experiment. In this study, an improved three-channel splitting-beam laser extensometer technique was developed to directly and independently track the displacement of the incident and transmission bar interfaces. By adopting a dual-channel configuration on the incident bar side, the resolution and measurement range of this laser extensometer were coordinated between the two channels to provide highly precise measurement at both small and large strains under high strain-rate loading condition. On the transmission bar side an amplified channel, similar to that used on the incident bar side, was adopted to measure the transmission bar displacement with high resolution. With this novel design, a maximum resolution of approximately 500 nm can be obtained for the bar displacement measurement, which corresponds to a strain of 0.0079% for a specimen with 6.35 mm gage length. To further improve the accuracy, a pair of lock nuts were used to tighten the tensile specimen to the bars in an effort not only to prevent the specimen from potential pre-torsional deformation and damage during installation, but also to provide better thread engagement between the specimen and the bar ends. As a demonstration of this technique, dynamic tensile stress-strain response of a 304L stainless steel was characterized with high resolution in both elastic and plastic deformations.

More Details

Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review

Journal of Dynamic Behavior of Materials

Heard, W.; Song, Bo S.; Williams, B.; Martin, B.; Sparks, P.; Nie, X.

This review article is dedicated to the Dynamic Behavior of Materials Technical Division for celebrating the 75th anniversary of the Society for Experimental Mechanics (SEM). Understanding dynamic behavior of geomaterials is critical for analyzing and solving engineering problems of various applications related to underground explosions, seismic, airblast, and penetration events. Determining the dynamic tensile response of geomaterials has been a great challenge in experiments due to the nature of relatively low tensile strength and high brittleness. Various experimental approaches have been made in the past century, especially in the most recent half century, to understand the dynamic behavior of geomaterials in tension. In this review paper, we summarized the dynamic tensile experimental techniques for geomaterials that have been developed. The major dynamic tensile experimental techniques include dynamic direct tension, dynamic split tension, and spall tension. All three of the experimental techniques are based on Hopkinson or split Hopkinson (also known as Kolsky) bar techniques and principles. Uniqueness and limitations for each experimental technique are also discussed.

More Details

Development of a New Method to Investigate the Dynamic Friction Behavior of Interfaces Using a Kolsky Tension Bar

Experimental Mechanics

Sanborn, Brett S.; Song, Bo S.; Nishida, E.E.

To understand interfacial interaction of a bi-material during an impact loading event, the dynamic friction coefficient is one of the key parameters that must be characterized and quantified. In this study, a new experimental method to determine the dynamic friction coefficient between two metals was developed by using a Kolsky tension bar and a custom-designed friction fixture. Polyvinylidene fluoride (PVDF) force sensors were used to measure the normal force applied to the friction tribo pairs and the friction force was measured with conventional Kolsky tension bar method. To evaluate the technique, the dynamic friction coefficient between 4340 steel and 7075-T6 aluminum was investigated at an impact speed of approximately 8 m/s. In addition, the dynamic friction coefficient of the tribo pairs with varied surface roughness was also investigated. The data suggest that higher surface roughness leads to higher friction coefficients at the same speed of 8 m/s.

More Details

Effect of pre-strain, processing conditions, and impact velocity on energy dissipation in silicone foams and rubber

Conference Proceedings of the Society for Experimental Mechanics Series

Sanborn, Brett S.; Song, Bo S.

Silicone foams and rubber are used in a variety of applications to protect internal components from external shock impact. Understanding how these materials mitigate impact energy is a crucial step in designing more effective shock isolation systems for components. In this study, a Kolsky bar with pre-compression and passive radial confinement capabilities was used to investigate the response of silicone foams and rubber subjected to impact loading at different speeds. Using the preload capability, silicone foam samples were subjected to increasing levels of pre-strain. Frequency-based analyses were carried out on results from silicone foams and rubber to study the effect of both pre-strain and material processing conditions on the mechanism of energy dissipation in the frequency domain. Additionally, effects of impact speed on energy dissipation through silicone foams and rubber were investigated.

More Details

Investigation of Energy Dissipation Behavior in Threaded Joints Under Impact Loading Using a Kolsky Tension Bar

Sanborn, Brett S.; Song, Bo S.

Threaded joints are a common fastening method in applications where disassembly may be required. With a fair amount of investigation of static behavior of threaded joints, less emphasis has been placed on the behavior of threaded joints subjected to transient impact loads. Understanding how energy is transferred across threaded joints under impact loading conditions is critical for improved design and optimization for extreme mechanical environments. Many factors, such as pre - torque, pre - tension load, and impact speed can affect how energy is transferred or dissipated across threaded joins. In addition, high-fidelity numerical simulation of mechanical response of threaded components under blast or impact loading requires reliable experiments and subsequent analyses. In this study, the energy dissipation behavior through a threaded joint under impact loading conditions is investigated using a Kolsky tension bar. The aim is to study possible energy dissipation behavior in both time and frequency domains while the threaded joint remains intact. New analytical methods to understand both time-and frequency-domain behavior of threaded joints are presented. Energy dissipation characteristics through steel-to-steel and steel-to-aluminum threaded joints were then investigated with varying parameters such as pre-torque and impact velocity.

More Details

Development of a New Method to Investigate Dynamic Friction Behavior of Metallic Materials Using a Kolsky Tension Bar

Sanborn, Brett S.; Song, Bo S.; Nishida, E.E.

Understanding the interfacial behavior of two materials sliding relative to each other is import ant in computational modeling and simulating impact or shock response of components, subsystems, and even full-scale systems. Although often considered as a constant for different applications, the coefficient of friction may be dependent on a number of factors such as normal force, roughness, material type, temperature, and sliding velocity. In this study, a new method based on a Kolsky tension bar with a custom-made friction fixture was developed for measurement of the dynamic friction coefficient between two metallic materials at high sliding velocities. In this new method, polyvinylidene fluoride (PVDF) thin film force sensors were used to measure the normal force, while a strain gage on the transmission bar was used to measure the friction force. As such, the dynamic friction coefficient is calculated with the normal and friction forces. The impact velocity can be varied to investigate the dependency of friction coefficient on impact velocity. To evaluate the technique, friction coefficients between 4340 steel and 7075-T6 we re measured at three different sliding velocities of 4, 8 and 11 m/s. Effects of surface roughness, normal force, and impact speed were also explored . Decreased static and kinetic friction coefficient s were observed when the normal force was increased at constant sliding velocity. With increasing velocity, the friction coefficient remained fairly constant for the three velocities studied. Higher friction coefficients were measured when the specimen roughness was increased.

More Details

Experimental evaluation of low-pass shock isolation performance of elastomers using frequency-based Kolsky bar analyses

Latin American Journal of Solids and Structures

Sanborn, Brett S.; Song, Bo S.; Nishida, E.E.; Knight, Marlene E.

Elastomeric materials are used as shock isolation materials in a variety of environments to dampen vibrations and/or absorb energy from external impact to minimize energy transfer between two objects or bodies. Some applications require the shock isolation materials to behave as a low-pass mechanical filter to mitigate the shock/impact at high frequencies but transmit the energy at low frequencies with minimal attenuation. To fulfill this requirement, a shock isolation material needs to be carefully evaluated and selected with proper experimental design, procedures, and analyses. In this study, a Kolsky bar was modified with precompression (up to 15.5 kN) and confinement capabilities to evaluate low-pass shock isolation performance in terms of acceleration attenuation through a variety of elastomers. Also investigated were the effects of preload and specimen geometry on the low-pass shock isolation response.

More Details

Dynamic Characterization and Stress-Strain Symmetry of Vascomax® C250 Maraging Steel in Compression and Tension

Procedia Engineering

Song, Bo S.; Sanborn, Brett S.; Wakeland, P.; Furnish, Michael D.

Low carbon, high strength steel alloys such as Vascomax steels are used in a wide variety of extreme environments due to their high strength, high fracture toughness, and stability over a wide range of temperatures. In this study, Vascomax® C250 steel was dynamically characterized in compression using Kolsky compression bar techniques at two strain rates of 1000 and 3000 s-1. A pair of impedance-matched tungsten carbide platens were implemented to protect damage to the bar ends. The tungsten carbide platens were experimentally calibrated as system compliance which was then properly corrected for actual specimen strain measurements. In addition, elastic indentation of the high-strength compression sample into the platens was also evaluated and showed negligible effect on the specimen strain measurements. The Vascomax® C250 steel exhibited strain-rate effects on the compressive stress-strain curves. The dynamic yield strength was approximately 18% higher than quasi-static yield strength obtained from hardness tests. The dynamic true stress-strain curves of the Vascomax® C250 steel in compression were also computed and then compared with the previously obtained true tensile stress-strain curves at the same strain rates. The Vascomax® C250 steel exhibited a reasonable symmetry in dynamic compression and tensile stress-strain response. However, the fracture strains in dynamic compression were smaller than those in dynamic tension probably due to different fracture mechanisms in the different loading modes.

More Details

Wave transmission through silicone foam pads in a compression Kolsky bar apparatus. Comparisons between simulations and measurements

Corona, Edmundo C.; Song, Bo S.

This memo concerns the transmission of mechanical signals through silicone foam pads in a compression Kolsky bar set-up. The results of numerical simulations for four levels of pad pre-compression and two striker velocities were compared directly to test measurements to assess the delity of the simulations. The nite element model simulated the Kolsky tests in their entirety and used the hyperelastic `hyperfoam' model for the silicone foam pads. Calibration of the hyperfoam model was deduced from quasi-static compression data. It was necessary, however, to augment the material model by adding sti ness proportional damping in order to generate results that resembled the experimental measurements. Based on the results presented here, it is important to account for the dynamic behavior of polymeric foams in numerical simulations that involve high loading rates.

More Details

High Strain Rate Tensile Response of A572 and 4140 Steel

Procedia Engineering

Sanborn, Brett S.; Song, Bo S.; Thompson, Andrew D.; Reece, Blake D.; Attaway, Stephen W.

Steel grades such as A572 and AISI 4140 are often used for applications where high rate or impact loading may occur. A572 is a hot-rolled carbon steel that is used where a high strength to weight ratio is desired. A grade such as AISI 4140 offers decent corrosion resistance due to higher chromium and molybdenum content and is commonly used in firearm parts, pressurized gas tubes, and structural tubing for roll cages. In these scenarios, the material may undergo high rate loading. Thus, material properties including failure and fracture response at relevant loading rates must be understood so that numerical simulations of impact events accurately capture the deformation and failure/fracture behavior of the involved materials. In this study, the high strain rate tensile response of A572 and 4140 steel are investigated. An increase in yield strength of approximately 28% was observed for 4140 steel when comparing 0.001 s-1 strain rate to 3000 s-1 experiments. A572 showed an increase in yield strength of approximately 52% when the strain rate increased from quasi-static to 2750 s-1. Effects on true stress and strain at failure for the two materials are also discussed.

More Details

Dynamic Characterization and Stress-Strain Symmetry of Vascomax® C250 Maraging Steel in Compression and Tension

Procedia Engineering

Song, Bo S.; Sanborn, Brett S.; Wakeland, P.; Furnish, Michael D.

Low carbon, high strength steel alloys such as Vascomax steels are used in a wide variety of extreme environments due to their high strength, high fracture toughness, and stability over a wide range of temperatures. In this study, Vascomax® C250 steel was dynamically characterized in compression using Kolsky compression bar techniques at two strain rates of 1000 and 3000 s-1. A pair of impedance-matched tungsten carbide platens were implemented to protect damage to the bar ends. The tungsten carbide platens were experimentally calibrated as system compliance which was then properly corrected for actual specimen strain measurements. In addition, elastic indentation of the high-strength compression sample into the platens was also evaluated and showed negligible effect on the specimen strain measurements. The Vascomax® C250 steel exhibited strain-rate effects on the compressive stress-strain curves. The dynamic yield strength was approximately 18% higher than quasi-static yield strength obtained from hardness tests. The dynamic true stress-strain curves of the Vascomax® C250 steel in compression were also computed and then compared with the previously obtained true tensile stress-strain curves at the same strain rates. The Vascomax® C250 steel exhibited a reasonable symmetry in dynamic compression and tensile stress-strain response. However, the fracture strains in dynamic compression were smaller than those in dynamic tension probably due to different fracture mechanisms in the different loading modes.

More Details
Results 51–75 of 161
Results 51–75 of 161