Adaptive Learning Theory
Abstract not provided.
Abstract not provided.
Abstract not provided.
This document is the main user guide for the Sierra/Percept capabilities including the mesh_adapt and mesh_transfer tools. Basic capabilities for uniform mesh refinement (UMR) and mesh transfers are discussed. Examples are used to provide illustration. Future versions of this manual will include more advanced features such as geometry and mesh smoothing. Additionally, all the options for the mesh_adapt code will be described in detail. Capabilities for local adaptivity in the context of offline adaptivity will also be included. This page intentionally left blank.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.