Publications

Results 3651–3675 of 9,998

Search results

Jump to search filters

Sensor Placement Optimization using Chama

Klise, Katherine A.; Laird, Carl; Nicholson, Bethany L.

Continuous or regularly scheduled monitoring has the potential to quickly identify changes in the environment. However, even with low - cost sensors, only a limited number of sensors can be deployed. The physical placement of these sensors, along with the sensor technology and operating conditions, can have a large impact on the performance of a monitoring strategy. Chama is an open source Python package which includes mixed - integer, stochastic programming formulations to determine sensor locations and technology that maximize monitoring effectiveness. The methods in Chama are general and can be applied to a wide range of applications. Chama is currently being used to design sensor networks to monitor airborne pollutants and to monitor water quality in water distribution systems. The following documentation includes installation instructions and examples, description of software features, and software license. The software is intended to be used by regulatory agencies, industry, and the research community. It is assumed that the reader is familiar with the Python Programming Language. References are included for addit ional background on software components. Online documentation, hosted at http://chama.readthedocs.io/, will be updated as new features are added. The online version includes API documentation .

More Details

XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17

Moreland, Kenneth D.; Pugmire, David; Rogers, David; Childs, Hank; Ma, Kwan-Liu; Geveci, Berk

The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

More Details
Results 3651–3675 of 9,998
Results 3651–3675 of 9,998