Publications

Results 101–125 of 336

Search results

Jump to search filters

Validation metrics for deterministic and probabilistic data

Journal of Verification, Validation and Uncertainty Quantification

Maupin, Kathryn A.; Swiler, Laura P.; Porter, Nathan W.

Computational modeling and simulation are paramount to modern science. Computational models often replace physical experiments that are prohibitively expensive, dangerous, or occur at extreme scales. Thus, it is critical that these models accurately represent and can be used as replacements for reality. This paper provides an analysis of metrics that may be used to determine the validity of a computational model. While some metrics have a direct physical meaning and a long history of use, others, especially those that compare probabilistic data, are more difficult to interpret. Furthermore, the process of model validation is often application-specific, making the procedure itself challenging and the results difficult to defend. We therefore provide guidance and recommendations as to which validation metric to use, as well as how to use and decipher the results. An example is included that compares interpretations of various metrics and demonstrates the impact of model and experimental uncertainty on validation processes.

More Details

Fast Approximate Union Volume in High Dimensions with Line Samples

Mitchell, Scott A.; Awad, Muhammad A.; Ebeida, Mohamed S.; Swiler, Laura P.

The classical problem of calculating the volume of the union of d-dimensional balls is known as "Union Volume." We present line-sampling approximation algorithms for Union Volume. Our methods may be extended to other Boolean operations, such as setminus; or to other shapes, such as hyper-rectangles. The deterministic, exact approaches for Union Volume do not scale well to high dimensions. However, we adapt several of these exact approaches to approximation algorithms based on sampling. We perform local sampling within each ball using lines. We have several variations, depending on how the overlapping volume is partitioned, and depending on whether radial, axis-aligned, or other line patterns are used. Our variations fall within the family of Monte Carlo sampling, and hence have about the same theoretical convergence rate, 1 /$\sqrt{M}$, where M is the number of samples. In our limited experiments, line-sampling proved more accurate per unit work than point samples, because a line sample provides more information, and the analytic equation for a sphere makes the calculation almost as fast. We performed a limited empirical study of the efficiency of these variations. We suggest a more extensive study for future work. We speculate that different ball arrangements, differentiated by the distribution of overlaps in terms of volume and degree, will benefit the most from patterns of line samples that preferentially capture those overlaps. Acknowledgement We thank Karl Bringman for explaining his BF-ApproxUnion (ApproxUnion) algorithm [3] to us. We thank Josiah Manson for pointing out that spoke darts oversample the center and we might get a better answer by uniform sampling. We thank Vijay Natarajan for suggesting random chord sampling. The authors are grateful to Brian Adams, Keith Dalbey, and Vicente Romero for useful technical discussions. This work was sponsored by the Laboratory Directed Research and Development (LDRD) Program at Sandia National Laboratories. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR), Applied Mathematics Program. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

More Details

Spoke-darts for high-dimensional blue-noise sampling

ACM Transactions on Graphics

Mitchell, Scott A.; Ebeida, Mohamed S.; Awad, Muhammad A.; Park, Chonhyon; Patney, Anjul; Rushdi, Ahmad A.; Swiler, Laura P.; Manocha, Dinesh; Wei, Li Y.

Blue noise sampling has proved useful for many graphics applications, but remains underexplored in high-dimensional spaces due to the difficulty of generating distributions and proving properties about them. We present a blue noise sampling method with good quality and performance across different dimensions. The method, spoke-dart sampling, shoots rays from prior samples and selects samples from these rays. It combines the advantages of two major high-dimensional sampling methods: the locality of advancing front with the dimensionality-reduction of hyperplanes, specifically line sampling. We prove that the output sampling is saturated with high probability, with bounds on distances between pairs of samples and between any domain point and its nearest sample. We demonstrate spoke-dart applications for approximate Delaunay graph construction, global optimization, and robotic motion planning. Both the blue-noise quality of the output distribution and the adaptability of the intermediate processes of our method are useful in these applications.

More Details

Changing the Engineering Design & Qualification Paradigm in Component Design & Manufacturing (Born Qualified)

Roach, R.A.; Bishop, Joseph E.; Jared, Bradley H.; Keicher, David M.; Cook, Adam W.; Whetten, Shaun R.; Forrest, Eric C.; Stanford, Joshua S.; Boyce, Brad B.; Johnson, Kyle J.; Rodgers, Theron R.; Ford, Kurtis R.; Martinez, Mario J.; Moser, Daniel M.; van Bloemen Waanders, Bart G.; Chandross, M.; Abdeljawad, Fadi F.; Allen, Kyle M.; Stender, Michael S.; Beghini, Lauren L.; Swiler, Laura P.; Lester, Brian T.; Argibay, Nicolas A.; Brown-Shaklee, Harlan J.; Kustas, Andrew K.; Sugar, Joshua D.; Kammler, Daniel K.; Wilson, Mark A.

Abstract not provided.

Special issue on uncertainty quantification in multiscale system design and simulation

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

Swiler, Laura P.; Wang, Yan

The importance of uncertainty has been recognized in various modeling, simulation, and analysis applications, where inherent assumptions and simplifications affect the accuracy of model predictions for physical phenomena. As model predictions are now heavily relied upon for simulation-based system design, which includes new materials, vehicles, mechanical and civil structures, and even new drugs, wrong model predictions could potentially cause catastrophic consequences. Therefore, uncertainty and associated risks due to model errors should be quantified to support robust systems engineering.

More Details
Results 101–125 of 336
Results 101–125 of 336