Publications

Results 96826–96850 of 99,299

Search results

Jump to search filters

Characterization of heat transport and radiation hydrodynamics in collisional laser plasmas using collective Thomson scattering

Cameron, Stewart M.

The author proposes using the collective Thomson scattering lineshape from ion acoustic waves to measure the spatial structure of local heat transport parameters and collisionality. Ion acoustic peak height asymmetry is used in conjunction with a recently developed model describing the effects of collisional and Landau damping contributions on the low-frequency electron density fluctuation spectrum to extract the relative electron drift. The local heat flux q{sub e} (proportional to drift) and the electron thermal conductivity {kappa}{sub e}{minus}q{sub e}/{gradient}T{sub e} would be inferred from experimentally determined temperature gradients {gradient}T{sub e}. Damping of the entropy wave component at zero mode frequency is shown to be an estimate of the ion thermal conductivity {kappa}{sub i}, and its visibility is a direct measure of the ion-ion mean free path {lambda}{sub ii}.

More Details

Scaling issues associated with thermal and structural modeling and testing

Thomas, R.K.

Sandia National Laboratories (SNL) is actively engaged in research to characterize abnormal environments, and to improve our capability to accurately predict the response of engineered systems to thermal and structural events. Abnormal environments, such as impact and fire, are complex and highly nonlinear phenomena which are difficult to model by computer simulation. Validation of computer results with full scale, high fidelity test data is required. The number of possible abnormal environments and the range of initial conditions are very large. Because full-scale tests are very costly, only a minimal number have been conducted. Scale model tests are often performed to span the range of abnormal environments and initial conditions unobtainable by full-scale testing. This paper will discuss testing capabilities at SNL, issues associated with thermal and structural scaling, and issues associated with extrapolating scale model data to full-scale system response. Situated a few minutes from Albuquerque, New Mexico, are the unique test facilities of Sandia National Laboratories. The testing complex is comprised of over 40 facilities which occupy over 40 square miles. Many of the facilities have been designed and built by SNL to simulate complex problems encountered in engineering analysis and design. The facilities can provide response measurements, under closely controlled conditions, to both verify mathematical models of engineered systems and satisfy design specifications.

More Details

Development and experimental validation of computational methods to simulate abnormal thermal and structural environments

Moya, Jaime L.

Over the past 40 years, Sandia National Laboratories (SNL) has been actively engaged in research to improve the ability to accurately predict the response of engineered systems to abnormal thermal and structural environments. These engineered systems contain very hazardous materials. Assessing the degree of safety/risk afforded the public and environment by these engineered systems, therefore, is of upmost importance. The ability to accurately predict the response of these systems to accidents (to abnormal environments) is required to assess the degree of safety. Before the effect of the abnormal environment on these systems can be determined, it is necessary to ascertain the nature of the environment. Ascertaining the nature of the environment, in turn, requires the ability to physically characterize and numerically simulate the abnormal environment. Historically, SNL has demonstrated the level of safety provided by these engineered systems by either of two approaches: (1) a purely regulatory approach, or (2) by a Probabilistic Risk Assessment (PRA). This paper will address the latter of the two approaches.

More Details

Chromate-free talc chemical conversion coatings for aluminum alloys

Buchheit, R.G.; Drewien, C.A.; Stoner, G.E.

We have found that aluminum alloys exhibit unusual passivity when exposed to alkaline Li-salt solutions. Observed passivity is due to the formation of a polycrystalline Li{sub 2}[Al{sub 2}(OH){sub 6}]{sub 2}{center_dot}CO{sub 3}{center_dot}3H{sub 2}O film on the aluminum surface. This film is persistent in aggressive environments and provides a significant degree of corrosion protection. On this basis, we have developed a simple non-electrolytic method of forming corrosion resistant coatings in alkaline Li-salt solution. This process is procedurally similar to traditional conversion coating methods, offers desirable properties, and has a low toxic hazard. In this paper, coating methods, coating characterization, and coating properties are presented. Results from parallel test performed with a commercial chromate conversion coatings are presented for comparison.

More Details

Perforation of thin unreinforced concrete slabs

Luk, Vincent K.

This report discusses fourteen tests which were conducted to investigate the perforation of thin unreinforced concrete slabs. The 4340-steel projectile used in the test series is 50.8 mm in diameter, 355.6 mm in length, has a mass of 2.34 kg. and an ogive nose with caliber radius head of 3. The slabs, contained within steel culverts, are 1.52 m in diameter and consist of concrete with a nominal unconfined compressive strength of 38.2 MPa and maxima aggregate size of 9.5 mm. Slab thicknesses are 284.4, 254.0, 215.9 and 127.0 mm. Tests were conducted at impact velocities of about 313 m/s on all slab thicknesses and about 379 and 471 m/s on the 254.0-mm-thick slab. All tests were conducted at normal incidence to the slab. All tests were conducted at normal incidence to the slab. Information obtained from the tests used to determine the loading (deceleration) on the projectile during the perforation process, the velocity-displacement of the projectile as it perforated the slab, and the projectile position as damage occurred on the backface of the slab. The test projectile behaved essentially as a rigid body for all of the tests.

More Details

Gas sensor technology at Sandia National Laboratories: Catalytic gate, Surface Acoustic Wave and Fiber Optic Devices

Hughes, Robert C.

Sandia`s gas sensor program encompasses three separate electronic platforms: Acoustic Wave Devices, Fiber Optic Sensors and sensors based on silicon microelectronic devices. A review of most of these activities was presented recently in a article in Science under the title ``Chemical Microsensors.`` The focus of the program has been on understanding and developing the chemical sensor coatings that are necessary for using these electronic platforms as effective chemical sensors.

More Details

Technology transfer at Sandia National Laboratories

Allen, Mark S.

Transferring technology to the private sector to help improve the competitiveness of key US industries is now an official mission of the US Department of Energy`s (DOE) defense program national laboratories. We believe that national laboratories can play an important role in addressing US industrial competitiveness. Sandia is seeking to match laboratory strengths with industry-defined market needs in targeted industrial sectors. Sandia, like other national and federal laboratories, is developing an aggressive technology transfer program. This paper provides a brief review of our program and provides a snap-shot of where we are at today.

More Details

Plasma Facing Components Generic Facilities Review Panel (PFC-GFRP): Final report

Mcgrath, R.

The Plasma Facing Components (PFC) Facilities Review Panel was chartered by the US Department of Energy, Office of Fusion Energy, ITER (International Thermonuclear Experimental Reactor) and Technology Division, to outline the program plan and identify the supporting test facilities that lead to reliable, long-lived plasma facing components for ITER. This report summarizes the panel`s findings and identifies the necessary and sufficient set of test facilities required for ITER PFC development.

More Details

CORCON-MOD3: An integrated computer model for analysis of molten core-concrete interactions. User`s manual

Bradley, D.R.; Gardner, D.R.; Brockmann, J.E.; Griffith, R.O.

The CORCON-Mod3 computer code was developed to mechanistically model the important core-concrete interaction phenomena, including those phenomena relevant to the assessment of containment failure and radionuclide release. The code can be applied to a wide range of severe accident scenarios and reactor plants. The code represents the current state of the art for simulating core debris interactions with concrete. This document comprises the user`s manual and gives a brief description of the models and the assumptions and limitations in the code. Also discussed are the input parameters and the code output. Two sample problems are also given.

More Details

Measuring the dynamic compression and release behavior of rocks and grouts associated with HYDROPLUS

Furnish, Michael D.

Gas-gun impact tests were performed on twelve rocks and rock simulants pertinent to the HYDROPLUS nuclear yield measurement program: A variety of tuffs, rhyolites, carbonates, grouts, an epoxy-alumina mixture and quartzite permafrost samples recovered in an apparently preserved frozen state from northern Canada. The present report presents results for all of these materials except for the carbonates. Two classes of impact techniques were employed for measuring equation-of-state properties for these materials. Both use velocity interferometry diagnostics. One, employing a sample-in-projectile geometry, provides high-precision Hugoniot data and continuous release trajectories for dry or water-saturated materials. The majority of the experiments were performed with this geometry. The other, employing a sample-in-target geometry, provides loading path and Hugoniot data as well as limited release data. Uncertainties in the results have been estimated by analyzing the effects of errors in observables and ancillary material properties.

More Details

Utilizing a Russian space nuclear reactor for a United States space mission: Systems integration issues

Polansky, Gary

The Nuclear Electric Propulsion Space Test Program (NEPSTP) has developed a cooperative relationship with several institutes of the former Soviet Union to evaluate Russian space hardware on a US spacecraft One component is the Topaz II Nuclear Power System; a built and flight qualified nuclear reactor that has yet to be tested in space. The access to the Topaz II reactor provides the NEPSTP with a rare opportunity; to conduct an early flight demonstration of nuclear electric propulsion at a relatively low cost. This opportunity, however, is not without challenges. Topaz II was designed to be compatible with Russian spacecraft and launch vehicles. It was manufactured and flight qualified by Russian techniques and standards and conforms to safety requirements of the former Soviet Union, not the United States. As it is desired to make minimal modifications to the Topaz II, integrating the reactor system with a United States spacecraft and launch vehicle presents an engineering challenge. This paper documents the lessons teamed regarding the integration of reactor based spacecraft and also some insight about integrating Russian hardware. It examines the planned integration flow along with specific reactor requirements that affect the spacecraft integration including American-Russian space system compatibility.

More Details

Prediction of explosive cylinder tests using equations of state from the PANDA code

Kerley, G.I.; Christian-Frear, T.L.

The PANDA code is used to construct tabular equations of state (EOS) for the detonation products of 24 explosives having CHNO compositions. These EOS, together with a reactive burn model, are used in numerical hydrocode calculations of cylinder tests. The predicted detonation properties and cylinder wall velocities are found to give very good agreement with experimental data. Calculations of flat plate acceleration tests for the HMX-based explosive LX14 are also made and shown to agree well with the measurements. The effects of the reaction zone on both the cylinder and flat plate tests are discussed. For TATB-based explosives, the differences between experiment and theory are consistently larger than for other compositions and may be due to nonideal (finite dimameter) behavior.

More Details

Incorporating long-term climate change in performance assessment for the Waste Isolation Pilot Plant

Swift, Peter

The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic wastes generated by defense programs. Applicable regulations (40 CFR 191) require the DOE to evaluate disposal-system performance for 10,000 yr. Climatic changes may affect performance by altering groundwater flow. Paleoclimatic data from southeastern New Mexico and the surrounding area indicate that the wettest and coolest Quaternary climate at the site can be represented by that at the last glacial maximum, when mean annual precipitation was approximately twice that of the present. The hottest and driest climates have been similar to that of the present. The regularity of global glacial cycles during the late Pleistocene confirms that the climate of the last glacial maximum is suitable for use as a cooler and wetter bound for variability during the next 10,000 yr. Climate variability is incorporated into groundwater-flow modeling for WIPP PA by causing hydraulic head in a portion of the model-domain boundary to rise to the ground surface with hypothetical increases in precipitation during the next 10,000 yr. Variability in modeled disposal-system performance introduced by allowing head values to vary over this range is insignificant compared to variability resulting from other causes, including incomplete understanding of transport processes. Preliminary performance assessments suggest that climate variability will not affect regulatory compliance.

More Details

Structure of as-deposited and heat-treated iron-zinc coatings from chloride bath

Drewien, Celeste A.

The iron content, phase constitution, and microstructure of electrodeposited iron-zinc alloy (EZA) coatings, deposited from chloride baths, is described for as-deposited and heat-treated conditions of coatings containing bulk iron contents of 6, 8, 10, and 13 w/o. The observed influence of current density upon iron content, which in turn influences the phase constitution and microstructure of the coatings, is reported. The microstructure, composed of non-equilibrium phases that have nanometer grain sizes, is illustrated and described with respect to iron content, crystallography, and morphology. As-deposited {eta} phase coatings undergo transformations through a sequence of metastable phases when heated. The sequence of phase transformations varies with iron content, but the mechanisms of phase transformation from the as-deposited eta phase to the metastable G phase was found to be similar in 6, 8, and 10 w/o Fe coatings. Microstructural, compositional, and crystallographic changes associated with this phase transformation are discussed.

More Details

A mobile system for the remote assembly of planetary structures

Boissiere, P.T.

Operations which involve the dexterous manipulation of materials in hazardous environments have, in the past, been completed directly by personnel. Use of humans in these environments is under increased scrutiny due to the high cost and low productivity associated with providing protective clothing and environments. Remote systems are needed to accomplish many tasks such as the assembly of structures at remote sites when exposure of personnel to radiation and other hazards is unacceptable. Traditional remote manual operations have, unfortunately, proven to have very low productivity when compared with human operators. Recent advances in the integration of sensors and computing into the control of remotely operated equipment have shown great promise for reducing the cost of remote systems while providing safer remote systems. This paper discusses applications of such advances to remote assembly operations.

More Details

Temperature dependence of Static RAM volatility

Meisenheimer, Timothy L.

We have measured the temperature dependence of the volatility of a wide variety of Static RAMS. The temperature dependence is directly related to the memory cell design and device processing or fabrication parameters. We have seen the volatility change by {approximately}10 orders of magnitude when the absolute temperature is changed by a factor of {approximately}2. We present physical reasons for such a large temperature dependence and derive an analytical model which accurately predicts the volatility. Neutron irradiation is seen to increase the low-temperature volatility.

More Details

Advances in preparing and characterizing low density pan-carbon microcellular foam

Lagasse, Robert R.

This report documents an improved preparation of low density microcellular carbon as well as characterization of spatial homogeneity. The report also documents the process for preparing the nficrocellular carbon from poly(acrylonitrile) raw material. A microcellular polymer precursor (0.025 g/cc) is first prepared via a solution-based process and then pyrolyzed to produce the microcellular carbon in a monolithic form (0.05 g/cc). The process improvement developed in this study permits the pore structure of the n-ficrocellular polymer precursor and the microcellular carbon to be reproduced consistently in different laboratories. Pore structure is affected by the completeness of dissolution of the polymer raw material, which variable can be adjusted via dissolution temperature or particle size of the raw material. The second topic in this report involves determining the spatial fluctuation in mass density caused by periodic, millimeter-scale bands, known as `tree rings` visible on machined surfaces of the carbon monoliths. To measure the fluctuations, we developed a high precision, spatially resolved X-ray transmission technique. The periodic bands caused less than {plus_minus}2% variation of mass density in a microcellular carbon having average density 0.041 g/cc.

More Details

Program plan for the development of advanced synthetic-diamond drill bits for hard-rock drilling

Glowka, D.A.; Schafer, D.M.

Eight companys have teamed with Sandia Labs to work on five projects as part of a cooperative effort to advance the state of the ar in synthetic-diamond drill bit design and manufacture. DBS (a Baroid Company), Dennis Tool Company, Hughes Christensen Company, Maurer Engineering, Megadiamond, Security Diamond Products, Slimdril International, and Smith International. Objective of each project is to develop advanced bit technology that results in new commercial products with longer bit life and higher penetration rates in hard formations. Each project explores a different approach to synthetic-diamond cutter and bit design and, consequently, uses different approaches to developing the technology. Each of these approaches builds or the respective companies` capabilities and current product interests. Sandia`s role is to assure integration of the individual projects into a coherent program and tc provide unique testing and analytical capabilities where needed. One additional company, Amoco Production Research, will provide synthetic-diamond drill bit research expertise and field testing services for each project in the program.

More Details

Users manual for CATNIP: A computer analysis tool for normal impact penetration

Altman, Brad S.

This program was developed to provide a computer based framework for analytical models developed by Forrestal and co-workers [1--2] to predict depth of penetration and temporal quantities for rigid non- deforming ogive-nose projectiles penetrating into a wide variety of targets. CATNIP provides results for penetration into semi-infinite targets, but does not provide for perforation events. The program has a graphical user interface to facilitate operation so that people unfamiliar with the analytical models can use the code with a minimum of training. CATNIP runs on Apple Macintosh computers using the Hypercard program. The Hypercard program is included with the system software on all Macintosh computers. A familiarity with the Macintosh use of pointing and clicking with the mouse is assumed for the use of this program.

More Details

Graphical programming at Sandia National Laboratories

Mcdonald, M.J.; Palmquist, R.D.; Desjarlais, L.

Sandia has developed an advanced operational control system approach, called Graphical Programming, to design, program, and operate robotic systems. The Graphical Programming approach produces robot systems that are faster to develop and use, safer in operation, and cheaper overall than altemative teleoperation or autonomous robot control systems. Graphical Programming also provides an efficient and easy-to-use interface to traditional robot systems for use in setup and programming tasks. This paper provides an overview of the Graphical Programming approach and lists key features of Graphical Programming systems. Graphical Programming uses 3-D visualization and simulation software with intuitive operator interfaces for the programming and control of complex robotic systems. Graphical Programming Supervisor software modules allow an operator to command and simulate complex tasks in a graphic preview mode and, when acceptable, command the actual robots and monitor their motions with the graphic system. Graphical Programming Supervisors maintain registration with the real world and allow the robot to perform tasks that cannot be accurately represented with models alone by using a combination of model and sensor-based control.

More Details

Invigilation plans for monitoring the quality and reliability of continuously produced product

Prairie, R.R.; Zimmer, W.J.

Part of the evaluation process that occurs during production of many complex components is performance testing of fabricated units as they are being produced. The results of these tests are used monitor the quality and reliability of the product and to contribute to the data base for reliability assessment. This paper presents an approach for designing plans for the evaluation of continuously produced product where the testing may be either destructive or non-destructive. The philosophy of the plans is to initially test a string of consecutive units at the beginning of production to show that the design and manufacturing processes conform with the required reliability. Once the product has passed the initial testing, a sampling phase is begun. If the product continues pass, a reduced sampling rate phase is used. Failures in the initial phase or the first sampling phase cause the plans to revert to the initial phase restart. If a failure occurs during the reduced sampling, the estimated failure rate is checked for concordance with the reliability requirement. This check is made to allow for continuation of sampling if the cumulative number of failures is consistent with the reliability requirement. A selection of values for the parameters of the plans and a rule for determining concordance are presented. The parameters of the plans are related to the AQL and LTPD concepts of acceptance sampling and the average number of defective units passed before a defective unit is sampled and detected.

More Details

Optoelectronic packaging: A review

Carson, R.F.

Optoelectronics and photonics hold great potential for high data-rate communication and computing. Wide using in computing applications was limited first by device technologies and now suffers due to the need for high-precision, mass-produced packaging. The use of phontons as a medium of communication and control implies a unique set of packaging constraints that was not present in traditional telecommunications applications. The state-of-the-art in optoelectronic packaging is now driven by microelectric techniques that have potential for low cost and high volume manufacturing.

More Details

A Sandia Technology Bulletin: Testing technology, July 1993

Goetsch, Robert S.

Inside this issue various short articles on current testing technology research at Sandia National Laboratories. New techniques of imaging currents in integrated circuits are described. Geomaterials testing is improved with true axial loading under high pressure. Pyroshock simulation tests electronics for space and defense. Insulated cameras get pictures of extremely hot burning fuels. Solar cell testing is improved via spectral response and laser scanning. And missile launching accomplishments are presented.

More Details

Segregation of Si to the surface of Fe-29Ni-17Co alloy

Nelson, G.C.

The segregation of Si impurities from the bulk to the surface of a low Cr Lot of Kovar{sup TM} (Fe-29Ni-17Co) has been investigated in order to determine the effects on the quality of the braze of Cu to these altered surfaces. It is found that oxides of Si are formed on the surface during wet hydrogen firing. Kinetics of this segregation process have been measured.

More Details

Particle behavior in an ECR plasma etch tool

Blain, Matthew G.

Sources of particles in a close-coupled electron cyclotron resonance (ECR) polysilicon plasma etch source include flaking of films deposited on chamber surfaces, and shedding of material from electrostatic wafer chucks. A large, episodic increase in the number of particles added to a wafer in a clean system is observed more frequently for a plasma-on than for a gas-only source condition. For polymer forming process conditions, particles were added to wafers by a polymer film which was observed to fracture and flake away from chamber surfaces. The presence of a plasma, especially when rf bias is applied to the wafer, caused more particles to be ejected from the walls and added to wafers than the gas-only condition; however, no significant influence was observed with different microwave powers. A study of effect of electrode temperatures on particles added showed that thermophoretic forces are not significant for this ECR configuration. Particles originating from the electrostatic chuck were observed to be deposited on wafers in much larger numbers in the presence of the plasma as compared to gas-only conditions.

More Details
Results 96826–96850 of 99,299
Results 96826–96850 of 99,299