Publications

Results 93026–93050 of 96,771

Search results

Jump to search filters

Fourth-generation photovoltaic concentrator system development

O'Neill, M.J.; Mcdanal, A.J.

In 1991, under a contract with Sandia for the Concentrator Initiative, the ENTECH team initiated the design and development of a fourth-generation concentrator module. In 1992, Sandia also contracted with ENTECH to develop a new control and drive system for the ENTECH array. This report documents the design and development work performed under both contracts. Manufacturing processes for the new module were developed at the same time under a complementary PVMaT contract with the National Renewable Energy Laboratory. Two 100-kW power plants were deployed in 1995 in Texas using the newly developed fourth-generation concentrator technology, one at the CSW Solar Park near Ft. Davis and one at TUE Energy Park in Dallas. Technology developed under the Sandia contracts has made a successful transition from the laboratory to the production line to the field.

More Details

Agile manufacturing from a statistical perspective

Easterling, Robert G.

The objective of agile manufacturing is to provide the ability to quickly realize high-quality, highly-customized, in-demand products at a cost commensurate with mass production. More broadly, agility in manufacturing, or any other endeavor, is defined as change-proficiency; the ability to thrive in an environment of unpredictable change. This report discusses the general direction of the agile manufacturing initiative, including research programs at the National Institute of Standards and Technology (NIST), the Department of Energy, and other government agencies, but focuses on agile manufacturing from a statistical perspective. The role of statistics can be important because agile manufacturing requires the collection and communication of process characterization and capability information, much of which will be data-based. The statistical community should initiate collaborative work in this important area.

More Details

Growth and properties of W-B-N diffusion barriers deposited by chemical vapor deposition

Fleming, J.G.

The authors have used chemical vapor deposition to grow ternary tungsten-based diffusion barriers to determine if they exhibit properties similar to those of sputter-deposited ternaries. A range of different W-B-N compositions in a band of compositions roughly between 20 and 40% W were produced. The deposition temperature was low, 350 C, and the precursors used are well accepted by the industry. Deposition rates are high for a diffusion barrier application. Resistivities range from 200 to 20,000 {micro}{Omega}-cm, the films with the best barrier properties having {approximately}1,000 {micro}{Omega}-cm resistivities. Adhesion to oxides is sufficient to allow these films to be used as the adhesion layer in a tungsten chemical mechanical polishing plug application. The films are x-ray amorphous as-deposited and have crystallization temperatures of up to 900 C. Barrier performance against Cu has been tested using diode test structures. A composition of W{sub .23}B{sub .49}N{sub .28} was able to prevent diode failure up to a 700 C, 30 minute anneal. These materials, deposited by CVD, display properties similar to those deposited by physical deposition techniques.

More Details

Oleoresin Capsicum toxicology evaluation and hazard review

Archuleta, Melecita M.

Oleoresin Capsicum (OC) is an extract of the pepper plant used for centuries as a culinary spice (hot peppers). This material has been identified as a safe and effective Less-Than- Lethal weapon for use by Law enforcement and security professionals against assault. The National Institute of Justice (NIJ) is currently also evaluating its use in conjunction with other Less-Than-Lethal agents such as aqueous foam for use in corrections applications. Therefore, a comprehensive toxicological review of the literature was performed for the National Institute of Justice Less-Than-Lethal Force program to review and update the information available on the toxicity and adverse health effects associated with OC exposure. The results of this evaluation indicate that exposure to OC can result in dermatitis, as well as adverse nasal, pulmonary, and gastrointestinal effects in humans. The primary effects of OC exposure include pain and irritation of the mucous membranes of the eyes, nose, and lining of the mouth. Blistering and rash have been shown to occur after chronic or prolonged dermal exposure. Ingestion of capsicum may cause acute stinging of the lips, tongue, and oral mucosa and may lead to vomiting and diarrhea with large doses. OC vapors may also cause significant pulmonary irritation and prolonged cough. There is no evidence of long term effects associated with an acute exposure to OC, and extensive use as a culinary additive and medicinal ointment has further provided no evidence of long term adverse effects following repeated or prolonged exposure.

More Details

Superconducting Technology Program Sandia 1994 Annual Report

Roth, E.P.

Sandia`s STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) Process research on the material synthesis of high-temperature superconductors, (2) Investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films, (3) Process development and characterization of high-temperature superconducting wire and tape, and (4) Cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY94 in each of these four areas. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas.

More Details

Discharge rates of porous carbon double layer capacitors

Eisenmann, E.T.

Double layer capacitors with porous carbon electrodes have very low frequency response limits and correspondingly low charge-discharge rates. Impedance measurements of various commercial double layer capacitors and of carbon electrodes prepared from selected precursor materials were found to yield similar, yet subtly different characteristics. Through modeling with the traditional transmission line equivalent circuit for porous electrodes, a resistive layer can be identified, which forms on carbon films during carbonization and survives the activation procedure. A method for determining the power-to-energy ratio of electrochemical capacitors has been developed. These findings help define new ways for optimizing the properties of double layer capacitors.

More Details

Integrated Services Management System (ISMS): A management and decision making tool

Mead, Judith W.

This document provides information concerning the Integrated Services Management System (ISMS) that was developed for the Laboratories Services Division during the period February 1994 through May 1995. ISMS was developed as a formal method for centralized management of programs within the Division. With minor modifications, this system can be adapted for management of all overhead functions at SNL or for sector level program management. Included in this document are the reasons for the creation of this system as well as the resulting benefits. The ISMS consists of six interlinked processes; Issues Management, Task/Activity Planning, Work Decision, Commitment Management, Process/Project Management, and Performance Assessment. Those processes are described in detail within this document. Additionally, lessons learned and suggestions for future improvements are indicated.

More Details

Alpha Solarco`s Photovoltaic Concentrator Development program

Anderson, A.; Bailor, B.; Carroll, D.

This report details the work done under Sandia`s Photovoltaic Concentrator Development contract, funded jointly by Alpha Solarco and the US Department of Energy. It discusses improvements made to the cell assembly and module design of Alpha Solarco`s point-focus, high-concentration photovoltaic module. The goals of this effort were to increase the module efficiency, reduce the manufacturing cost of the cell assembly, and increase product reliability. Redesign of the secondary optical element achieved a 4 percent increase in efficiency due to better cell fill factors and offtrack performance. New, lower cost materials were identified for the secondary optical element, the optical couple between the secondary optical element and the cell, and the cell assembly electrical insulator. Manufacturing process improvements and test equipment are also discussed.

More Details

Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

Peters, E.M.; Masso, J.D.

This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

More Details

Fundamental science of nanometer-size clusters

Wilcoxon, Jess P.

This research has produced a variety of monodisperse, nanometer-size clusters (nanoclusters for short), characterized their size and crystal structure and developed a scientific understanding of the size dependence of their physical properties. Of specific interest were the influence of quantum electronic confinement on the optical properties, magnetic properties, and dielectric properties. These properties were chosen both for their potential practical impact on various applications identified in the National Critical Technologies list (e.g., catalysis, information storage, sensors, environmental remediation, ...) as well as for their importance to the fundamental science of clusters. An Executive Summary provides a description of the major highlights.

More Details

Electromagnetic coilgun launcher for space applications

Turman, Bobby N.

A ground-based electrically-powered launcher could significantly reduce the complexity and cost of space launches for moderate-weight payloads. The EM launch complex could greatly reduce the amount of fuels handling, reduce the turnaround time between launches, allow more concurrence in launch preparation, reduce the manpower requirements for launch vehicle preparation and increase the reliability of launch by using more standardized vehicle preparations. The launch requires high acceleration, so the satellite package must be hardened. This paper presents results of a study to estimate the required launcher parameters, and estimate the cost of such a launch facility. This study is based on electromagnetic gun technology which is constrained to a coaxial geometry to take advantage of the efficiency of closely-coupled coils. The launcher energy and power requirements fall in the range of 40 {minus} 260 GJ and 20 {minus} 400 GW electric. Parametric evaluations have been conducted with a launcher length of 1-2 km, exit velocity of 1-6 kn/s, and payloads to low earth orbit of 100 1000 kg.

More Details

View graph presentations of the sixth DOE industry/university/lab forum on robotics for environmental restoration and waste management

Horschel, Daniel S.

The mission of the Robotics Technology Development Program involves the following: develop robotic systems where justified by safety, cost, and/or efficiency arguments; integrate the best talent from National Labs, industry, and universities in focused teams addressing complex-wide problems; and involve customers in the identification and development of needs driven technologies. This presentation focuses on five areas. They are: radioactive tank waste remediation (Richland); mixed waste characterization, treatment, and disposal (Idaho Falls); decontamination and decommissioning (Morgantown); landfill stabilization (Savannah River); and contaminant plumes containment and remediation (Savannah River).

More Details

The effects of non-hydrostatic compression and applied electric field on the electromechanical behavior of poled PZT 95/5-2Nb ceramic during the F{sub R1} {yields} A{sub 0} polymorphic phase transformation

Zeuch, David H.

We conducted hydrostatic and constant-stress-difference (CSD) experiments at room temperature on two different sintered batches of poled, niobium-doped lead-zirconate-titanate ceramic (PZT 95/5-2Nb). The objective of this test plan was to quantify the effects of nonhydrostatic stress on the electromechanical behavior of the ceramic during the ferroelectric, rhombohedral {yields} antiferroelectric, orthorhombic (FE {yields} AFE) phase transformation. We also performed a series of hydrostatic and triaxial compression experiments in which a 1000 V potential was applied to poled specimens to evaluate any effect of a sustained bias on the transformation. As we predicted from earlier tests on unpoled PZT 95/5-2Nb, increasing the stress difference up to 200 MPa (corresponding to a maximum resolved shear stress of 100 MPa) decreases the mean stress and confining pressure at which the transformation occurs by 25--33%, for both biased and unbiased conditions. This same stress difference also retards the rate of transformation at constant pressurization rate, resulting in reductions of up to an order of magnitude in the rate of charge release and peak voltage attained in our tests. This shear stress-voltage effect offers a plausible, though qualitative explanation for certain systematic failures that have occurred in neutron generator power supplies when seemingly minor design changes have been made. Transformation strains in poled ceramic are anisotropic (differing by up to 33%) in hydrostatic compression, and even more anisotropic under non-hydrostatic stress states. Application of a 1000 V bias appears to slightly increase (by {le}2%) the transformation pressure for poled ceramic, but evidence for this conclusion is weak.

More Details

Aztec user`s guide. Version 1

Shadid, John N.

Aztec is an iterative library that greatly simplifies the parallelization process when solving the linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. Aztec is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparse unstructured matrices for parallel solution. Once the distributed matrix is created, computation can be performed on any of the parallel machines running Aztec: nCUBE 2, IBM SP2 and Intel Paragon, MPI platforms as well as standard serial and vector platforms. Aztec includes a number of Krylov iterative methods such as conjugate gradient (CG), generalized minimum residual (GMRES) and stabilized biconjugate gradient (BICGSTAB) to solve systems of equations. These Krylov methods are used in conjunction with various preconditioners such as polynomial or domain decomposition methods using LU or incomplete LU factorizations within subdomains. Although the matrix A can be general, the package has been designed for matrices arising from the approximation of partial differential equations (PDEs). In particular, the Aztec package is oriented toward systems arising from PDE applications.

More Details

An image sensor capable of detecting nano-ampere transient signals with strong background illumination

Chu, Dahlon D.

A readout detector integrated circuit (IC) has been developed which is capable of detecting nano-ampere photo-current signals of interest in a high (micro-ampere) background illumination or DC noise level (SNR=92dB). The readout detector sensor IC processes transient signals of interest from a separate photodiode array chip. Low noise signal conditioning, filtering, and signal thresholding implement smart sensor detection of only ``active pixels.`` This detector circuit can also be used to perform signal conditioning for other sensor applications that require detection of very small signals in a high background noise environment.

More Details

Experimental measurements of the Hugoniot of stishovite

Furnish, Michael D.

The crust and mantle of the Earth are primarily composed of silicates. The properties of these materials under compression are of interest for deducing deep-earth composition. As well, the properties of these materials under shock compression are of interest for calculating groundshock propagation. The authors have synthesized, characterized, and performed Hugoniot measurements on monolithic polycrystalline SiO{sub 2} samples which were predominantly stishovite (a high-pressure polymorph). Synthesis was accomplished in a multianvil press with pyrophyllite gaskets and carbon heaters. The samples had densities ranging from 3.80 to 4.07, corresponding to stishovite volume fractions of 0.7 to 0.87, a range confirmed by NMR analysis. Electron microprobe and X-ray fluorescence characterizations showed minor carbon contamination (< 1%), with no other significant impurities. Samples {approximately} 1 mm thick and 3 mm diameter were tested in reverse and forward-ballistics modes on a two-stage light gas gun, using velocity interferometry diagnostics. Impact velocities ranged from 4.0 to 6.5 km/sec. Hugoniot stresses for four tests ranged from 65 to 225 GPa. At higher stresses significant uncertainties arise due to impact tilt/nonplanarity issues. Results are consistent with earlier predictions of the stishovite Hugoniot based on quartz-centered Hugoniot data, static-compression (diamond-anvil cell) data and hydrostatic multianvil cell data. Release behavior appears to be frozen. These results are remarkable in view of the small size of the samples used. Results are compared with current EOS models.

More Details

Advanced Materials Laboratory hazards assessment document

Barnett, B.; Banda, Z.

The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

More Details

Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste

Levin, V.

Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton, Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.

More Details

A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

Davies, Peter B.

Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.

More Details

Coupled multiphase flow and closure analysis of repository response to waste-generated gas at the Waste Isolation Pilot Plant (WIPP)

Davies, Peter B.

A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance.

More Details

Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results

Hansen, Francis D.

Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results.

More Details

A generic algorithm for constructing hierarchical representations of geometric objects

Xavier, Patrick G.

For a number of years, robotics researchers have exploited hierarchical representations of geometrical objects and scenes in motion-planning, collision-avoidance, and simulation. However, few general techniques exist for automatically constructing them. We present a generic, bottom-up algorithm that uses a heuristic clustering technique to produced balanced, coherent hierarchies. Its worst-case running time is O(N{sup 2}logN), but for non-pathological cases it is O(NlogN), where N is the number of input primitives. We have completed a preliminary C++ implementation for input collections of 3D convex polygons and 3D convex polyhedra and conducted simple experiments with scenes of up to 12,000 polygons, which take only a few minutes to process. We present examples using spheres and convex hulls as hierarchy primitives.

More Details

Robotically controlled slosh-free motion of an open container of liquid

Feddema, John T.

This paper describes two methods for controlling the surface of a liquid in an open container as it is being carried by a robot arm. Both methods make use of the fundamental mode of oscillation and damping of the liquid in the container as predicted from a boundary element model of the fluid. The first method uses an infinite impulse response filter to alter an acceleration profile so that the liquid remains level except for a single wave at the beginning and end of the motion. The motion of the liquid is similar to that of a simple pendulum. The second method removes the remaining two surface oscillations by tilting the container parallel to the beginning and ending wave. A double pendulum model is used to determine the trajectory for this motion. Experimental results of a FANUC S-800 robot moving a 230 mm diameter hemispherical container of water are presented.

More Details

Trajectory generation for two robots cooperating to perform a task

Lewis, Christopher L.

This paper formulates an algorithm for trajectory generation for two robots cooperating to perform an assembly task. Treating the two robots as a single redundant system, this paper derives two Jacobian matrices which relate the joint rates of the entire system to the relative motion of the grippers with respect to one another. The advantage of this formulation over existing methods is that a variety of secondary criteria can be conveniently satisfied using motion in the null-space of the relative Jacobian. This paper presents methods for generating dual-arm joint trajectories which perform assembly tasks while at the same time avoiding obstacles and joint limits, and also maintaining constraints on the absolute position and orientation of the end-effectors.

More Details
Results 93026–93050 of 96,771
Results 93026–93050 of 96,771