In-situ barrier materials and designs are being developed for containment of high risk contamination as an alternative to immediate removal or remediation. The intent of these designs is to prevent the movement of contaminants in either the liquid or vapor phase by long-term containment, essentially buying time until the contaminant depletes naturally or a remediation can be implemented. The integrity of the resultant soil-binder mixture is typically assessed by a number of destructive laboratory tests (leaching, compressive strength, mechanical stability with respect to wetting and freeze-thaw cycles) which as a group are used to infer the likelihood of favorable long-term performance of the barrier. The need exists for a minimally intrusive yet quantifiable methods for assessment of a barrier`s integrity after emplacement, and monitoring of the barrier`s performance over its lifetime. Here, the authors evaluate non-destructive measurements of inert-gas diffusion (specifically, SF{sub 6}) as an indicator of waste-form integrity. The goals of this project are to show that diffusivity can be measured in core samples of soil jet-grouted with Portland cement, validate the experimental method through measurements on samples, and to calculate aqueous diffusivities from a series of diffusion measurements. This study shows that it is practical to measure SF{sub 6} diffusion rates in the laboratory on samples of grout (Portland cement and soil) typical of what might be used in a barrier. Diffusion of SF{sub 6} through grout (Portland cement and soil) is at least an order of magnitude slower than through air. The use of this tracer should be sensitive to the presence of fractures, voids, or other discontinuities in the grout/soil structure. Field-scale measurements should be practical on time-scales of a few days.
This paper describes updates and revisions to the data acquisition computer program DATAVG which has served as the basic data collection system for the Sandia National Laboratories Geomechanics Department, Rock Mechanics Laboratory since late 1992. DATAVG was first described in Event Triggered Data Acquisition in the Rock Mechanics Laboratory, [Hardy, 1993]. DATAVG has been modified to incorporate numerous user-requested enhancements and a few bug fixes. In this paper these changes to DATAVG are described.
The generation of particles in gas handling systems as a result of corrosion is a major concern in the microelectronics industry. The corrosion can be caused by the presence of trace quantities of water in corrosive gases such as HCl or HBr. FTIR spectroscopy has been shown to be a method that can be made compatible with corrosive gases and is capable of detecting low ppb levels of water vapor. In this report, the application of FTIR spectroscopy combined with classical least squares multivariate calibration to detect trace H{sub 2}O in N{sub 2}, HCl and HBr is discussed. Chapter 2 discusses the gas handling system and instrumentation required to handle corrosive gases. A method of generating a background spectrum useful to the measurements discussed in this report, as well as in other application areas such as gas phase environmental monitoring, is discussed in Chapter 3. Experimental results obtained with the first system are presented in Chapter 4. Those results made it possible to optimize the design options for the construction of a dedicate system for low ppb water vapor determination. These designs options are discussed in Chapter 5. An FTIR prototype accessory was built. In addition, a commercially available evacuable FTIR system was obtained for evaluation. Test results obtained with both systems are discussed in Chapter 6. Experiments dealing with the interaction between H{sub 2}O-HCl and potential improvements to the detection system are discussed in Chapter 7.
Dose enhancement and dose rate were measured in more than a dozen gamma sources using pMOS RADFETs and TLDs from two independent sources. ARACOR X-ray dose rates were calibrated using single- and dual-dielectric RADFETs.
The Photovoltaic Manufacturing Technology Program (PVMaT) program began in 1990 as a cost-shared partnership among the US photovoltaic industry and the US Photovoltaic Program. Balance-of-systems (BOS) components and concepts were included under Phase 4A1 of the program. BOS contracts ranged from newly developed AC PV modules to 100kW inverters for photovoltaic applications. Utility-interactive, stand-alone and hybrid components were also improved, while better manufacturing processes were developed. Specific products developed through Phase 4A1 contracts included AC modules and module integrated inverters, an advanced polymer system to reduce BOS costs, low cost integrated tracking PV systems, improved inverters, new concept inverters, communications links for BOS, and advanced modular PV systems for remote applications. This paper summarizes the research and development work, presents product and applications improvements, and describes manufacturing improvements while analyzing performance and cost benefits.
To achieve the lowest life-cycle cost (LCC), photovoltaic (PV) systems must have the optimum mix of low first cost, low operation and maintenance (O&M) cost, and high availability. Additionally, the long-term health of the photovoltaic (PV) industry requires that PV systems work as expected. Although PV modules now enjoy high reliability due to a significant multi-year effort by both the U.S. Department of Energy (DOE) and industry, the same is not always true of PV systems. Even for systems that do operate reliably, customers, suppliers, and manufacturers can benefit from knowing what O&M expenses to expect. This knowledge will reduce technology risk to the customer and improve likelihood of commitment to PV projects. System integrators and utilities may benefit from O&M cost information to improve system designs, to properly price service agreements and warranties, and to optimize maintenance strategies. The DOE and component manufacturers may benefit from identifying cost drivers to optimally focus research and quality assurance resources to improve product reliability. This paper discusses the first of five tasks identified for this project, quantifying system reliability and life cycle cost by collecting, analyzing and reporting data on PV system reliability and cost. Industry participants collect the necessary O&M data on systems they are monitoring. Sandia provides support in the form of assistance identifying data that needs to be collected, helping develop forms or databases to collect the data, and analyzing the data.
The performance of an amp-hour (Ah) counting battery charge control algorithm has been defined and tested using the Digital Solar Technologies MPR-9400 microprocessor based PV hybrid charge controller. This work included extensive field testing of the charge algorithm on flooded lead-antimony and valve regulated lead-acid (VRLA) batteries. The test results after one-year have demonstrated that PV charge utilization, battery charge control, and battery state of charge (SOC) has been significantly improved by providing maximum charge to the batteries while limiting battery overcharge to manufacturers specifications during variable solar resource and load periods.
An industry supported task group has recently completed writing proposals for changes in bring Article 690 of the 1999 National Electrical Code (NEC{reg_sign}) up to the state-of-the-art in photovoltaic device and system technology. This paper summarizes proposed code changes, discusses background on both new and changed, and presents examples for the proposed changes. Topics such as the proposed new temperature compensation table for calculating maximum system voltage are analyzed. Procedures for calculating conductor sizes with the proposed changes are presented. Impacts on photovoltaic installations, building integrated systems, and AC module installations are also analyzed.
A nonlinear discretization scheme in space and energy, based on the recently developed exponential discontinuous method, is applied to continuous slowing down dominated electron transport (i.e., in the absence of scattering.) Numerical results for dose and charge deposition are obtained and compared against results from the ONELD and ONEBFP codes, and against exact results from an adjoint Monte Carlo code. It is found that although the exponential discontinuous scheme yields strictly positive and monotonic solutions, the dose profile is considerably straggled when compared to results from the linear codes. On the other hand, the linear schemes produce negative results which, furthermore, do not damp effectively in some cases. A general conclusion is that while yielding strictly positive solutions, the exponential discontinuous method does not show the crude cell accuracy for charged particle transport as was apparent for neutral particle transport problems.
Two methods for the use of lunar materials for the construction of shelters on the Moon are being proposed: explosive consolidation of the soil into structural components and plasma spraying of the soil to join components. The plasma-sprayed coating would also provide protection from the intense radiation. In this work, a mare simulant was plasma-sprayed onto a stainless steel substrate. Deposition of a 0.020 inch coating using power inputs of 23, 25, 27 and 29 kW were compared. Hardness of the coatings increased with each increase of power to the system, while porosity at the interface decreased. All coatings exhibited good adhesion. Simultaneously, an explosively consolidated sample was similarly characterized to afford a comparison of structural features associated with each mode of proposed use.
In 1996, Sandia National Laboratories (SNL) undertook a major effort to develop, produce, and execute a Sites Comprehensive Plan. Fundamentally, this document is intended to serve as a tool to clarify the strategic link between (1) current and future mission needs and responsibilities, and (2) the condition, capacity, and required amount of facilities space and infrastructure. It documents the Facilities Group`s response to programmatic requests for capability and makes the case for the required facilities investments through integrated master plans that document SNL`s short- and long-range needs. This paper outlines the history and business environment that led to the writing of the plan, the organizations and committees involved, the steps required to develop and produce it, the challenges encountered in selling it, both internally and externally, and the issues involved in executing the proposed actions set forth in the plan. The paper also articulates the benefits gained by Facilities Management (FM) and the corporation, as well as the lessons learned in producing the plan. SNL has concluded that the Sites Comprehensive Plan was a worthwhile effort in terms of retained facilities investment funding, increased awareness of facility needs, and other measures, despite the significant effort and cost required to produce it.
This report outlines the future technology needs of the Chemical Industry in the area of catalysis and is a continuation of the process that produced the report Technology Vision 2020: The U.S. Chemical Industry and the Council for Chemical Research`s (CCR) Chemical Synthesis Team follow-up work in chemical synthesis. Vision 2020 developed a 25-year vision for the chemical industry and outlined the challenges to be addressed in order to achieve this vision. This report, which outlines the catalysis technology roadmap, is based on the output of the CCR`s Chemical Synthesis Team, plus a workshop held March -20-21, 1997, which included about 50 participants, with catalysis experts from industry, academia, and government. It is clear that all participants view catalysis as a fundamental driver to the 0274 economic and environmental viability of the chemical industry. Advances in catalytic science and technology are among the most crucial challenges to achieving the goals of the chemical industry advanced in Vision 2020.
Linear schemes applied to charged particle transport problems demonstrate high order accuracy but under certain conditions can also produce negative solutions. On the other hand, the recently developed nonlinear exponential discontinuous (ED) method has been shown to produce accurate strictly positive solutions, for positive sources, in neutral particle transport applications. We have applied this method to the solution, in space and energy, of the multispecies transport equations for relativistic heavy ions. The solution may be useful as a treatment planning tool for the irradiation of certain cancers using heavy ions. Collisions between projectile ions and atoms in the target medium can result in ion fragments different from the original species. The solution includes these projectile fragments. The primary ion and all fragments are treated using the straight ahead approximation under which the fragments continue on with the same velocity as the original projectile.
Sandia National Laboratories (SNL) has recently completed the irradiation of five isotope production targets at its Annular Core Research Reactor (ACRR) using targets fabricated by Los Alamos National Laboratory. Four of the irradiated targets were chemically processed in the SNL Hot Cell Facility (HCF) using the Cintichem process. The Cintichem method for processing {sup 99}Mo isotope production targets involves dissolution of a UO{sub 2} coating, separation of the Mo from the other fission products, and purifying the final product. Several processing issues were addressed during the initial process verification work. This paper discusses the results of work involving dissolving the UO{sub 2} coating, recovering Mo losses in purification columns, and radiation exposure testing of process glassware and components.
As part of the Isotope Production Program at Sandia National Laboratories New Mexico (SNL/NM), procedures are being finalized for the production of {sup 99}Mo from the irradiation of {sup 235}U-coated stainless steel targets at the Technical Area (TA) V reactor and hot cell facilities. Methods have been identified and tested for the management of the non-product (waste) material as the final step in the production process. These methods were developed utilizing the waste material from a series of cold and hot tests, beginning with depleted uranium powder and culminating with a test involving an irradiated {sup 235}U target with an initial fission product inventory of approximately 18,000 Ci at the end of the irradiation cycle.
The ARRAMIS risk and reliability analysis software suite developed by Sandia National Laboratories enables analysts to evaluate the safety and reliability of a wide range of complex systems whose failure results in high consequences. This software was originally designed to model the systems, responses, and phenomena associated with potential severe accidents at commercial nuclear power reactors by solving very large fault tree and event tree models. However, because of its power and versatility, ARRAMIS and its constituent analysis engines have recently been used to evaluate a wide variety of systems, including nuclear weapons, telecommunications facilities, robotic material handling systems, and aircraft systems using hybrid fault tree event tree analysis techniques incorporating fully integrated uncertainty analysis capabilities. This paper describes recent applications in the area of nuclear reactor accident progression analysis using a large event tree methodology and the ARRAMIS package.
Heavy charged particles deposit much of their kinetic energy at very high rates in small volumes near the end of their range. This characteristic, coupled with the availability of modern particle accelerators, has sparked a revival of interest in the use of ions as a possible treatment tool for certain types of cancers. Collisions between projectile ions and atoms in the target medium can result in ion fragments that are different from the original projectile species. The energy deposition characteristics of these fragments differ from those of the projectile in a manner that allows them to travel beyond the range of the original particle. This can result in deposition of doses in healthy tissue beyond the tumor. The loss of projectiles due to the fragmentation process will also affect the dose deposited in the target tumor. An accurate dose calculation requires that these effects be taken into account. Monte Carlo calculations are expensive, time consuming, and can be limited in the number of ion species considered. Linear methods can yield high-order accuracy but can sometimes exhibit the undesirable characteristic of calculating negative fluxes. In order to bypass these difficulties, we have applied the recently developed exponential discontinuous (ED) finite- element method to a calculation of dose deposition by relativistic heavy ion projectiles and fragments. The ED method has been shown to yield strictly -- positive solutions for positive sources of neutral particles.
In applications dealing with the deposition of amorphous hydrogenated carbon layers or in the determination of the composition of deposited layers on the walls of nuclear fusion plasma experiments, the analysis of mixtures of light elements on heavy substrates is necessary. Depth profiling by means of RBS is often difficult due to the overlap of the backscattering intensities of different constituents from different depths. The erosion and reaction of deposited amorphous deuterated carbon (a-C:D) films with a Be substrate due to annealing in air poses an analytical challenge especially if simultaneously the exchange of hydrogen isotopes should be monitored. The analysis of the different recoiling atoms from collisions with heavy ions in Elastic Recoil Detection (ERD) can provide a tool which resolves all constituents in a single analysis. In the present study the composition of intermixed layers on Be containing H, D, Be, C and O has been analyzed using conventional {sup 4}He RBS at 2.2 MeV together with 2.5 MeV {sup 4}He ERD for hydrogen isotope analysis. At these energies, an overlap of signals from different constituents could be avoided in most cases. As alternative method heavy ion ERD using Si{sup 7+} ions extracted from a 5 MeV Tandem Van de Graff accelerator was investigated. At a scattering angle of 30{degree} Si ions could not be scattered into the detector and a solid state detector without protecting foil could be used. Even in the intermixed layers at terminal energies of 5 MeV the heavy constituents could be separated while signals from recoiling hydrogen and deuterium atoms could be resolved on top of the signal from the Be substrate. For the analysis of the RBS and ERD data the newly developed spectra simulation program SIMNRA has been used which includes a large data bank for scattering and nuclear reaction cross sections. The depth profiles of all constituents extracted from the simulation are compared for both methods.
This paper presents ion beam induced charge collection (IBICC) contrast images showing regions of differing charge collection efficiency within optoelectronic modulator devices. The experiments were carried out at the Sandia nuclear microprobe using 18 MeV carbon and 2 MeV helium ions. Lines of varying densities are observed to run along the different {l_brace}110{r_brace} directions which correlate with misfit dislocations within the 392nm thick strained layer superlattice quantum well of the modulator structure. Independent cross-sectional TEM studies and the electrical properties of the devices under investigation suggest the presence of threading dislocations in the active device region at a density of {approximately} 10{sup 6} cm{sup {minus}2}. However, no clear evidence of threading dislocations was observed in the IBICC images as they are possibly masked by the strong contrast of the misfit dislocations. Charge carrier transport within the modulator is used to explain the observed contrast. The different signal to noise levels and rates of damage of the incident ions are assessed.
Remote sensing by satellite is increasingly important to the national government for treaty verification, battlefield monitoring, and other activities. In addition, civilian oriented applications are increasing in areas such as geology, meteorology, ecology, forestry, and agriculture. Spectral imaging sensors, an important subclass of satellite-borne sensors, have been shown to provide information far superior to that of conventional panchromatic images in many of these applications. However, spectral imaging adds at least two challenges to the already difficult task of viewing the earth from a distance of hundreds of kilometers. First, with numerous spectral channels, the signal-to-noise ratio is decreased in any one channel. Second the data rates of spectral imaging sensors (10 Mbytes/sec, or more) stress the limits of the electronic systems, including the onboard data storage, the downlink bandwidth, and the earthbound image analysis system. This report describes a new concept which the authors have dubbed the information-efficient spectral imaging sensor (ISIS) which addresses these two problems. In addition, it offers the promise of nearly real-time identification of targets.
Main-stream applications are beginning to incorporate public key cryptography. It can be difficult to deploy this technology without a robust infrastructure to support it. It can also be difficult to deploy a public key infrastructure among multiple enterprises when different applications and standards must be supported. This discussion chronicles the efforts by a team within the US Department of Energy`s Nuclear Weapons Complex to build a public key infrastructure and deploy applications that use it. The emphasis of this talk will be on the lessons learned during this effort and an assessment of the overall impact of this technology.
The sandstones of the Molina Member of the Wasatch Formation in the Piceance basin of northwestern Colorado contain a suite of fractures that have a conjugate-pair geometry. The fractures are vertical and intersect at an acute angle of between 20 and 40 degrees. Although direct evidence of shear is rare, the fracture surfaces commonly display small steps. The fracture geometries suggest that the maximum compressive stress during fracturing was in the plane of the acute angle of the conjugate fractures: the steps are interpreted as broken-face manifestations of very low angle en echelon fractures, formed within exceptionally narrow zones of incipient shear. In contrast to the highly anisotropic permeability enhancement created by subparallel vertical extension fractures in the underlying Mesaverde Formation, the conjugate pairs in the Molina sandstones should create a well connected and relatively isotropic mesh of fracture conductivity. Increases in stress magnitudes and anisotropy during production drawdown of reservoir pressures should cause shear offsets along the fractures, initially enhancing permeability.
In January, 1995 a collaborative effort to improve radiological consequence analysis methods and tools was initiated between the V.G. Khlopin Institute (KRI) and Sandia National Laboratories (SNL). The purpose of the collaborative effort was to transfer SNL`s consequence analysis methods to KRI and identify opportunities for collaborative efforts to solve mutual problems relating to the safety of radiochemical facilities. A second purpose was to improve SNL`s consequence analysis methods by incorporating the radiological accident field experience of KRI scientists (e.g. the Chernobyl and Kyshtym accidents). The initial collaborative effort focused on the identification of: safety criteria that radiochemical facilities in Russia must meet; analyses/measures required to demonstrate that safety criteria have been met; and data required to complete the analyses/measures identified to demonstrate the safety basis of a facility.
For over fifteen years Sandia National Laboratories has been involved in laboratory testing of biometric identification devices. The key concept of biometric identification devices is the ability for the system to identify some unique aspect of the individual rather than some object a person may be carrying or some password they are required to know. Tests were conducted to verify manufacturer`s performance claims, to determine strengths/weaknesses of devices, and to determine devices that meet the US Department of energy`s needs. However, during recent field installation, significantly different performance was observed than was predicted by laboratory tests. Although most people using the device believed it operated adequately, the performance observed was over an order of magnitude worse than predicted. The search for reasons behind this gap between the predicted and the actual performance has revealed many possible contributing factors. As engineers, the most valuable lesson to be learned from this experience is the value of scientists and engineers with (1) common sense, (2) knowledge of human behavior, (3) the ability to observe the real world, and (4) the capability to realize the significant differences between controlled experiments and actual installations.