This work presents a multi-objective differential dynamic programming approach to constrained discrete-time optimal control. In the backward sweep of the dynamic programming in the quadratic sub problem, the sub problem input at a stage or time step is solved for in terms of the sub problem state entering that stage so as to minimize the summed immediate and future cost subject to minimizing the summed immediate and future constraint violations, for all such entering states. The method differs from previous dynamic programming methods, which used penalty methods, in that the constraints of the sub problem, which may include terminal constraints and path constraints, are solved exactly if they are solvable; otherwise, their total violation is minimized. Again, the resulting solution of the sub problem is an input history that minimizes the quadratic cost function subject to being a minimizer of the total constraint violation. The expected quadratic convergence of the proposed algorithm is demonstrated on a numerical example.
This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.
As commercial air travel grows in terms of the number of passenger miles flown, there is expected to be a corresponding dramatic increase in the absolute number of accidents. This despite an enviable safety record and a very low accident rate. The political environment is such that an increase in the absolute number of accidents is not acceptable, with a stated goal of a factor of five reduction in the aviation fatal accident rate within ten years. The objective of this project is to develop an improved surveillance process that will provide measurements of the current state-of-health and predictions of future state of health of aircraft, operators, facilities, and personnel. Methodologies developed for nuclear weapon safety, in addition to more well known system safety and high-consequence engineering techniques, will be used in this approach.
The need for advanced (electronic) ceramic components with smaller size, greater functionality, and enhanced reliability requires the ability to integrate electronic ceramics in complex 3-D architectures. For rapid prototyping and small-lot manufacturing, traditional tape casting and screen printing approaches are poorly suited. To address this need, the authors are developing a direct-write approach for fabricating highly integrated, multilayer components using a micropen to deposit slurries in precise patterns. With this technique, components can be constructed layer by layer, simplifying fabrication. It can also be used to produce structures combining several materials in a single layer. The parts are either cofired or sequentially fired, after each layer is deposited. Since differential shrinkage can lead to defects in these multilayer structures, they are characterizing the sintering behavior of individual layers. This technique has been used to fabricate devices such integrated RC filters, multilayer voltage transformers, and other passive components. The direct-write approach provides the ability to fabricate multifunctional, multimaterial integrated ceramic components (MMICCs) in an agile and rapid way.
DOE, Aquila Technologies, LANL and SNL recently launched collaborative efforts to create a Non-Proliferation Network Systems Integration and Test (NN-Site, pronounced N-Site) facility. NN-Site will focus on wide area, local area, and local operating level network connectivity including Internet access. This facility will provide thorough and cost-effective integration, testing and development of information connectivity among diverse operating systems and network topologies prior to full-scale deployment. In concentrating on instrument interconnectivity, tamper indication, and data collection and review, NN-Site will facilitate efforts of equipment providers and system integrators in deploying systems that will meet nuclear non-proliferation and safeguards objectives. The following will discuss the objectives of ongoing remote monitoring efforts, as well as the prevalent policy concerns. An in-depth discussion of the Non-Proliferation Network Systems Integration and Test facility (NN-Site) will illuminate the role that this testbed facility can perform in meeting the objectives of remote monitoring efforts, and its potential contribution in promoting eventual acceptance of remote monitoring systems in facilities worldwide.
This paper presents a summary of work accomplished within the scope of the DOE-Gosatomnadzor (GAN) Agreement to reduce vulnerability to theft of direct-use nuclear materials in Russia. The DOE-GAN agreement concerns the Russian Academy of Science B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), located 45 kilometers from St. Petersburg. The PNPI operates facilities to research basic nuclear physics. Current world conditions require particular attention to the issue of Material Protection, Control, and Accounting (MPC&A) of nuclear materials. The long-term plan to increase security at the facility is outlined, including training, physical protection upgrades, and material control and accountability. 4 figs.
The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.
A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs.
The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities.
Approximately five years ago, the United States and countries of & Former Soviet Union (FSU) started the Cooperative Threat Reduction program. The program`s purpose was to accelerate reduction of the risk of nuclear proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This goal would be accomplished through near-term upgrades to strengthen the nuclear material protection, control, and accounting systems within the FSU countries. In addition to this near-term goal, a long-term goal of the U.S. Department of Energy`s (DOE) Material Protection, Control, and Accounting (MPC&A) program is to promote a new safeguards culture and to support the establishment of a sustaining MPC&A infrastructure in the FSU. This long-term goal is vital to assuring that the near-term upgrades remain effective for safeguarding nuclear material as these countries experience political and social changes. The MPC&A program is managed by DOE`s Russia/Newly Independent States (NIS) Nuclear Materials Security Task Force. A coordinated effort is underway to promote and to help establish a new safeguards culture and a sustaining infrastructure. Elements being implemented at both the national and site levels include system operational performance evaluations, development of MPC&A training, operational procedures, national MPC&A regulations, and adaptation of modern MPC&A methodologies to suit the conditions in the FSU countries. This paper identifies current efforts in several countries that are undergoing transition from near-term upgrades to sustainable MPC&A systems.
The MIMS is being developed as a cost-effective means of performing safeguards in unattended remote monitoring applications. Based on industry standards and an open systems approach, the MIMS architecture supports both data acquisition and data review subsystems. Data includes images as well as discrete and analog sensor outputs. The MIMS uses an Echelon LonWorks network as a standard means and method of data acquisition from the sensor. A common data base not only stores sensor and image data but also provides a structure by which dynamic changes to the sensor system can be reflected in the data acquisition and data review subsystems without affecting the execution software. The architecture includes standards for wide area communications between data acquisition systems and data review systems. Data authentication is provided as an integral part of the design. The MIMS software implements this architecture by combining the use of commercial applications with a set of custom 16 and 32 bit Microsoft Windows applications which are run under Windows NT and Windows 95 operating systems.
A Remote Monitoring System (RMS) field trial has been conducted with the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. The RMS included a variety of Sandia, Oak Ridge, and Aquila sensor technologies which provide containment seals, video monitoring, radiation asset measurements, and container identification data to the on-site DAS (Data Acquisition System) by way of radio-frequency and Echelon LonWorks networks. The accumulated safeguards information was transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines. The technologies tested in the remote monitoring environment are the RadCouple, RadSiP, and SmartShelf sensors from the ORSENS (Oak Ridge Sensors for Enhancing Nuclear Safeguards) technologies; the AIMS (Authenticated Item Monitoring System) motion sensor (AMS), AIMS fiber-optic seal (AFOS), ICAM (Image Compression and Authentication Module) video surveillance system, DAS (Data Acquisition System), and DIRS (Data and Image Review Station) from Sandia; and the AssetLAN identification tag, VACOSS-S seal, and Gemini digital surveillance system from Aquila. The field trial was conducted from October 1996 through May 1997. Tests were conducted during the monthly IAEA Interim Inventory Verification (IIV) inspections for evaluation of the equipment. Experience gained through the field trials will allow the technologies to be applied to various monitoring scenarios.
PBFA Z is a new 60-TW/5-MJ electrical driver located at Sandia National Laboratories. The authors use PBFA Z to drive z pinches. The pulsed power design of PBFA Z is based on conventional single-pulse Marx generator, water-line pulse-forming technology used on the earlier Saturn and PBFA II accelerators. PBFA Z stores 11.4 MJ in its 36 Marx generators, couples 5 MJ in a 60-TW/105-ns pulse to the output water transmission lines, and delivers 3.0 MJ and 50 TW of electrical energy to the z-pinch load. Depending on the initial load inductance and the implosion time, the authors attain peak currents of 16-20 MA with a rise time of 105 ns. Current is fed to the z-pinch load through self magnetically-insulated transmission lines (MITLs). Peak electric fields in the MITLs exceed 2 MV/cm. The current from the four independent conical-disk MITLs is combined together in a double post-hole vacuum convolute with an efficiency greater than 95%. The authors achieved x-ray powers of 200 TW and x-ray energies of 1.9 MJ from tungsten wire-array z-pinch loads.
Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository`s southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in signal detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM.
Under international partnerships and bilateral agreements with the U.S. Department of Energy, Sandia National Laboratories, other national laboratories, and international partner organizations have emplaced remote monitoring systems in nuclear facilities and laboratories in various parts of the world for the purpose of conducting field trials of remote monitoring. The purpose of the present report is to review the results from these field trials and draw general conclusions regarding the trials. Many thousands of hours of sensor and system operation have been logged, and data have been retrieved from many locations. In virtually all cases the system components have functioned as intended and data have been successfully collected and transmitted for review. Comparisons between front-end-triggered video and time-lapse video have shown that the triggered record has captured all relevant monitored operations at the various nuclear facilities included in the field trials. We believe the utility and functional reliability of remote monitoring for international safeguards has been shown. However, it should be kept in mind that openness and transparency, including some form of short-notice inspections, are likely to be prerequisites to the safeguards implementation of remote monitoring in any State.
Monitoring agencies often use computer based equipment to control instruments and to collect data at sites that are being monitored under international safeguards or other cooperative monitoring agreements. In order for this data to be used as an independent verification of data supplied by the host at the facility, the software used must be trusted by the monitoring agency. The monitoring party must be sure that the software has not be altered to give results that could lead to erroneous conclusions about nuclear materials inventories or other operating conditions at the site. The host might also want to verify that the software being used is the software that has been previously inspected in order to be assured that only data that is allowed under the agreement is being collected. A description of a method to provide this verification using keyed has functions and how the proposed method overcomes possible vulnerabilities in methods currently in use such as loading the software from trusted disks is presented. The use of public key data authentication for this purpose is also discussed.
During the past year, Sandia National Laboratories and Kurchatov Institute have continued collaborations under the Remote Monitoring Transparency Program (RMTP). The emphasis has been on promoting the concept of remote monitoring within the Russian Federation along with some hands-on technical training of Kurchatov personnel. The program has progressed in the direction to include the participation of Kurchatov personnel in the promotion, design, and implementation of Remote Monitoring Systems (RMS). The program has evolved from a system that was completely designed and implemented by Sandia (system that is currently installed at the Kurchatov gas plant) to a functional demonstration RMS that was designed and implemented by Kurchatov personnel with guidance and assistance from Sandia. This paper will present a brief history on the remote monitoring collaborations between Sandia and Kurchatov with an emphasis on the activities/accomplishments of the past year. The major accomplishments include a Remote Monitoring Workshop in Moscow organized by Kurchatov; integration of Russian sensors into the existing gas plant system; feedback from Kurchatov on the operation of the existing system; a training course conducted by Echelon Corporation in Albuquerque for Kurchatov and Sandia developers on the sensor network technology currently utilized in remote monitoring applications; an International Remote Monitoring Project (IRMP) technical workshop in Albuquerque organized by Sandia on software tools and development that included the participation of Kurchatov personnel; the development of a functional lab-based RMS by Kurchatov utilizing current technology; and the development of a remote monitoring Web homepage at Kurchatov.
Materials Protection, Control, and Accounting (MPC&A) upgrades have begun at the Institute of Theoretical and Experimental Physics (ITEP), a site that has significant quantities of direct-use nuclear materials. Cooperative work was initiated at this Moscow facility as a part of the U.S.-Russian Government-to-Government program to upgrade MPC&A systems. An initial site visit and assessment was conducted in September 1996 to establish communication between ITEP and the U.S. Department of Energy (DOE) and the participating U.S. national laboratories. Subsequently, the parties reached an agreement to develop two master plans for MPC&A upgrades. Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) would assist in developing a plan for Material Control and Accounting (MC&A) upgrades, and Sandia National Laboratories (SNL) would assist in developing a plan for Physical Protection (PP) upgrades. The MC&A plan included MC&A training, a mass measurement program, nondestructive assay instrumentation, item identification (bar coding), physical inventory taking, and a nuclear materials accounting system. The PP plan included basic PP system design training, Central Alarm Station (CAS) location and equipment upgrades, site and critical-building access control system, intrusion detection alarm assessment, and guard force communications.
Sandia National Laboratories (SNL) under DOE sponsorship is engaged in nuclear nonproliferation activities with the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. From 1995 to the present SNL and PNC have been participating in a cooperative project to implement and assess the use of remote monitoring to achieve nuclear nonproliferation objectives. Implementation of remote monitoring at the PNC Joyo facility took place during 1996 and continues to date. An International Fellowship began in the Fall of 1995 and has complemented the nonproliferation study. Plans are underway to extend the Fellowship and to upgrade the existing Remote Monitoring System to include another area at the Joyo facility. SNL and PNC are currently exploring the possibility of exchanging experts with the objective of promoting regional confidence building in Northeast Asia, possibly using some of the same remote monitoring technologies. This paper will provide an overview of these activities and report on the status of cooperative nonproliferation activities being conducted by PNC and SNL.
This paper explores some of the many issues in developing security enhanced MPI for embedded real-time systems supporting the Department of Defense`s Multi-level Security policy (DoD MLS) are presented along with the preliminary design for such an MPI variant. In addition some of the many issues that need to be addressed in creating security enhanced versions of MPI for other domains are discussed. 19 refs.
Several important milestones in codes and standards pertaining to the design, installation and operation of photovoltaic (PV) systems have recently been completed with collaboration of participants from all sectors of the PV industry, utilities and the US Department of Energy`s National Photovoltaic Program. Codes and standards that have been proposed, written or modified include changes and additions for the 1999 National Electrical Code{reg_sign} (NEC{reg_sign}), standards for fire and personnel safety, system testing, component qualification, and utility interconnect. Project authorization requests with the Institute of Electrical and Electronic Engineers (IEEE) have resulted in standards for listing PV modules and balance-of-system components. Industry collaboration with Underwriter Laboratories, Inc. (UL), with the American Society for Testing and Materials (ASTM), and through critical input and review for international standards with the International Electrotechnical Commission (IEC) have resulted in domestic and international standards for PV. Work related to the codes and standards activities through the International Energy Agency (IEA) is also being supported by the PV industry and the US DOE. This paper will concentrate on and summarize the important new NEC proposals for PV systems and will also describe and show the bonds between the activities in other standards writing activities. The paper will also provide an analysis of changes and resulting impacts of selected proposed NEC changes on PV designs, installations and performance.
The on-site inspection provisions in many current and proposed arms control agreements require extensive preparation and training on the part of both the Inspection Teams and the Inspected Parties. Current training techniques include lectures, table-top inspections, and practice inspections. The Augmented Computer Exercise for Inspection Training (ACE-IT), an interactive computer training tool, increases the utility of table-top inspections. Under the Chemical Weapons Convention (CWC) challenge inspections are short-notice inspections that may occur anywhere, anytime, and with no right of refusal. The time interval between notice of intent to inspect a facility and the arrival of inspectors at the facility may be as short as 72 hours. Therefore, advance training is important. ACE-IT is used for training both the Inspection Team (inspector) and the Inspected Party (host) to conduct a hypothetical challenge inspection under the CWC. An exercise moderator controls the exercise. The training covers all of the events in the challenge inspection regime, from initial notification of an inspection through post-inspection activities. But the primary emphasis of the training tool is on conducting the inspection itself, and in particular, the concept of managed access. Managed access is used to assure the inspectors that the facility is in compliance with the CWC, while protecting sensitive information that is not related to the CWC.
Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations.
In October 1954, the Statue of the IAEA (International Atomic Energy Agency) had been signed by 70 nations. The Agency was established in 1957, and at the end of its first year of operation 130 professionals were employed in all departments. By the end of 1990, the number of professionals in the Safeguards Department had increased to over 270, over 200 of whom are designated inspectors. One of the unique features of the IAEA which directly interfaces with Member States is that of on-site inspections by international officials of the IAEA. This growth cycle, spanning some 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. This paper addresses the specific subject of technical means to maintain continuity of knowledge between inspection intervals--classically referred to as Containment and Surveillance.
Cooperation on nuclear issues is receiving increased attention in Asia. In Northeast Asia, where the nuclear industry is well-developed, cooperation in the back end of the nuclear fuel cycle could help deal with issues such as disposition of spent fuel and long term storage options. In Southeast Asia, where countries are just beginning to introduce nuclear energy, cooperation would be useful in developing standards for the nuclear industry. Throughout Asia, nuclear research and power activities can raise concerns about safety, environmental pollution and proliferation. The sharing of relevant information, i.e. cooperative monitoring, will be essential to addressing these issues. In fact, a number of regional interactions on nuclear issues are already occurring. These range from training exchanges sponsored by the more advanced states to participation in environmental monitoring of the East Sea (Sea of Japan). Several states are considering sharing information from their nuclear facilities; some exchanges of radiation data are already in place. The KEDO reactor project will involve close working relations between the nuclear experts of South Korea, North Korea, Japan, and the US. Areas for further regional cooperation are discussed.