Proceedings of the ASME Design Engineering Technical Conference
Frear, D.R.
We present a new methodology for predicting the fatigue life of solder joints for electronics applications. This approach involves the integration of experimental and computational techniques. The first stage involves correlating the manufacturing and processing parameters with the starting microstructure of the solder joint. The second stage involves a series of experiments that characterize the evolution of the microstructure during thermal cycling. The third stage consists of a computer modeling and simulation effort that utilizes the starting microstructure and experimental data to produce a reliability prediction of the solder joint. This approach is an improvement over current methodologies because it incorporates the microstructure and properties of the solder directly into the model and allows these properties to evolve as the microstructure changes during fatigue.
IEEE International Pulsed Power Conference - Digest of Technical Papers
Martin, T.H.; Seamen, J.F.; Jobe, D.O.
The results of experiments on the energy losses in switches are presented. All experiments were circuit code modeled after the development of a new switch loss version based on Braginskii's spark channel theory for gasses. The circuit code predicts switch energy loss and peak currents as a function of time. Slight constant offsets between the theory and data that depended on the switching dielectric were observed. Plasma conductivity for each tested dielectric was modified to lessen this offset. An excellent agreement between the theory and experiment was also observed. The new model successfully predicted the series resistance of Marx generators.
Yucca Mountain, Nevada is a potential site for a high-level radioactive-waste repository. Uncertainty and sensitivity analyses were performed to estimate critical factors in the performance of the site with respect to a criterion in terms of pre-waste-emplacement ground-water travel time. The degree of failure in the analytical model to meet the criterion is sensitive to the estimate of fracture porosity in the upper welded unit of the problem domain. Fracture porosity is derived from a number of more fundamental measurements including fracture frequency, fracture orientation, and the moisture-retention characteristic inferred for the fracture domain.
This report contains an outline of the Solar Thermal Design Assistance Center's (STDAC) major activities and accomplishments in Fiscal Year 1992 (FY92). The report describes the resources allocated to fund STDAC and the personnel needed to carry out STDAC activities and accomplishments. It also contains a comprehensive list of persons that called STDAC for consultation in FY92.
Images taken with a synthetic aperture radar (SAR) on an airplane were distorted with phase errors generated by a computer program that simulates the propagation of radar waves through the disturbed ionosphere. The simulation is for an orbiting SAR imaging a scene on the ground. Both the spatially-invariant (decorrelation length projected onto the ground much larger than the scene size) and spatially-variant (decorrelation length much smaller than the scene size) cases are described. The spatially-invariant phase errors can be removed using several different algorithms. Problems and strategies in restoring SAR images distorted with spatially-variant phase errors are discussed.
Future challenges facing the nonproliferation community will undoubtedly change the normal way of doing business'' in international safeguards. New technology will emerge in support of compliance concepts such as transparency and openness, regional security assurance, bilateral cooperation, and special. or non-routine inspections. Technologies address in remote unattended monitoring, integrated on-site monitoring, environmental monitoring, satellite and aerial over-flight systems, equipment for special inspectios, and sharable data information fusion and management, are just a few examples of potential technologics for new nonproliferation monitoring regimes.
We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. This leads to balanced partitions that have lower communication overhead and are less expensive to compute than those of spectral bisection. In addition, our approach automatically works to minimize message contention on a hypercube or mesh architecture.
This paper describes a collaborative effort between Sandia National Laboratories and the Rocketdyne Division of Rockwell International Corporation to develop an automated braze paste dispensing system for rocket engine nozzle manufacturing. The motivation for automating this manufacturing process is to reduce the amount of labor and excess material required. A critical requirement for this system is the automatic location of key nozzle features using non-contact sensors. Sandia has demonstrated that the low-cost Multi-Axis Seam Tracking (MAST) capacitive sensor can be used to accurately locate the nozzle surface and tube gaps.
This paper examines some of the metrics that are commonly used to design correlation filter's for optical pattern recognition, including: the Fisher ratio, the signal-to-noise ratio, the equal correlation peak (ECP) constraint, and normalized correlation. Attention is given to the underlying assumptions that are required to move from Bayesian decision theory to a particular metric or design principle. Since a Bayes classifier is statistically optimum, this provides a means for assessing the merit of a particular approach. Although the authors only examine a few metrics in this paper, the approach is general and should be useful for assessing the merit and applicability of any of the numerous filter designs that have been proposed in the optical pattern recognition community.
This report discusses electronic isolators which are used to maintain electrical separation between safety and non-safety systems in nuclear power plants. The concern is that these devices may fail allowing unwanted signals or energy to act upon safety systems, or preventing desired signals from performing their intended function. While operational history shows many isolation device problems requiring adjustments and maintenance, we could not find incidents where there was a safety implication. Even hypothesizing multiple simultaneous failures did not lead to significant contributions to core damage frequency. Although the analyses performed in this study were not extensive or detailed, there seems to be no evidence to suspect that isolation device failure is an issue which should be studied further.
This report documents the fiscal year 1992 activities of the, Utility Battery Storage Systems Program (UBS) of the US Department of Energy (DOE), Office of Energy Management (OEM). The UBS program is conducted by Sandia National Laboratories (SNL). UBS is responsible for the engineering development of integrated battery systems for use in utility-energy-storage (UES) and other stationary applications. Development is accomplished primarily through cost-shared contracts with industrial organizations. An important part of the development process is the identification, analysis, and characterization of attractive UES applications. UBS is organized into five projects: Utility Battery Systems Analyses; Battery Systems Engineering; Zinc/Bromine; Sodium/Sulfur; Supplemental Evaluations and Field Tests. The results of the Utility Systems Analyses are used to identify several utility-based applications for which battery storage can effectively solve existing problems. The results will also specify the engineering requirements for widespread applications and motivate and define needed field evaluations of full-size battery systems.
The sixth experiment of the Integral Effects Test (IET-6) series was conducted to investigate the effects of high pressure melt ejection on direct containment heating. Scale models of the Zion reactor pressure vessel (RPV), cavity, instrument tunnel, and subcompartment structures were constructed in the Surtsey Test Facility at Sandia National Laboratories. The RPV was modeled with a melt generator that consisted of a steel pressure barrier, a cast MgO crucible, and a thin steel inner liner. The melt generator/crucible had a hemispherical bottom head containing a graphite limitor plate with a 4-cm exit hole to simulate the ablated hole in the RPV bottom head that would be formed by ejection of an instrument guide tube in a severe nuclear power plant accident. The cavity contained 3.48 kg of water, which corresponds to condensate levels in the Zion plant, and the containment basement floor was dry. A 43-kg initial charge of iron oxide/aluminum/chromium thermite was used to simulate corium debris on the bottom head of the RPV. Molten thermite was ejected by steam at an initial pressure of 6.3 MPa into the reactor cavity. The Surtsey vessel atmosphere contained pre-existing hydrogen to represent partial oxidation of the zirconium in the Zion core. The initial composition of the vessel atmosphere was 87.1 mol.% N[sub 2], 9.79 mol.% O[sub 2], and 2.59 mol.% H[sub 2], and the initial absolute pressure was 198 kPa. A partial hydrogen burn occurred in the Surtsey vessel. The peak vessel pressure increase was 279 kPa in IET-6, compared to 246 kPa in the IET-3 test. The total debris mass ejected into the Surtsey vessel in IET-6 was 42.5 kg. The gas grab sample analysis indicated that there were 180 g[center dot] moles of pre-existing hydrogen, and that 308[center dot]moles of hydrogen were produced by steam/metal reactions. About 335 g[center dot]moles of hydrogen burned, and 153 g[center dot]moles remained unreacted.
The Sandia National Laboratories (SNL) Engineering Analysis Code Access System (SEACAS) is a collection of structural and thermal codes and utilities used by analysts at SNL. The system includes pre- and post-processing codes, analysis codes, database translation codes, support libraries, UNIX{trademark} shell scripts, and an installation system. SEACAS is used at SNL on a daily basis as a production, research, and development system for the engineering analysts and code developers. Over the past year, approximately 180 days of Cray Y-MP{trademark} CPU time have been used at SNL by SEACAS codes. The job mix includes jobs using only a few seconds of CPU time, up to jobs using two and one-half days of CPU time. SEACAS is running on several different systems at SNL including Cray Unicos, Hewlett Packard HP-UX{trademark}, Digital Equipment Ultrix{trademark}, and Sun SunOS{trademark}. This document is a short description of the codes the SEACAS system.
This bulletin from Sandia Laboratories presents current research on testing technology. Fiber optics systems at the Nevada Test Site is replacing coaxial cables. The hypervelocity launcher is being used to test orbital debris impacts with space station shielding. A digital recorder makes testing of high-speed water entries possible. Automobile engine design is aided by an instrumented head gasket that detects the combustion zone. And composite-to-metal strength and fatigue tests provide new data on joint failures in wind turbine joint tests.
The CONTAIN computer code is a best-estimate, integrated analysis tool for predicting the physical, chemical, and radiological conditions inside a nuclear reactor containment building following the release of core material from the primary system. CONTAIN is supported primarily by the U. S. Nuclear Regulatory Commission (USNRC), and the official code versions produced with this support are intended primarily for the analysis of light water reactors (LWR). The present manual describes CONTAIN LMR/1B-Mod. 1, a code version designed for the analysis of reactors with liquid metal coolant. It is a variant of the official CONTAIN 1.11 LWR code version. Some of the features of CONTAIN-LMR for treating the behavior of liquid metal coolant are in fact present in the LWR code versions but are discussed here rather than in the User`s Manual for the LWR versions. These features include models for sodium pool and spray fires. In addition to these models, new or substantially improved models have been installed in CONTAIN-LMR. The latter include models for treating two condensables (sodium and water) simultaneously, sodium atmosphere and pool chemistry, sodium condensation on aerosols, heat transfer from core-debris beds and to sodium pools, and sodium-concrete interactions. A detailed description of each of the above models is given, along with the code input requirements.
Inelastic material constitutive relations for elastoplasticity coupled with continuum damage mechanics are investigated. For elastoplasticity, continuum damage mechanics, and the coupled formulations, rigorous thermodynamic frameworks are derived. The elastoplasticity framework is shown to be sufficiently general to encompass J{sub 2} plasticity theories including general isotropic and kinematic hardening relations. The concepts of an intermediate undamaged configuration and a fictitious deformation gradient are used to develop a damage representation theory. An empirically-based, damage evolution theory is proposed to overcome some observed deficiencies. Damage deactivation, which is the negation of the effects of damage under certain loading conditions, is investigated. An improved deactivation algorithm is developed for both damaged elasticity and coupled elastoplasticity formulations. The applicability of coupled formulations is validated by comparing theoretical predictions to experimental data for a spectrum of materials and loads paths. The pressure-dependent brittle-to-ductile transitional behavior of concrete is replicated. The deactivation algorithm is validated using tensile and compression data for concrete. For a ductile material, the behavior of an aluminum alloy is simulated including the temperature-dependent ductile-to-brittle behavior features. The direct application of a coupled model to fatigue is introduced. In addition, the deactivation algorithm in conjunction with an assumed initial damage and strain is introduced as a novel method of simulating the densification phenomenon in cellular solids.
Target recognition requires the ability to distinguish targets from non-targets, a capability called one-class generalization. Many neural network pattern classifiers fail as one-class classifiers because they use open decision boundaries. To function as one-class classifier, a neural network must have three types of generalization: within-class, between-class, and out-of-class. We discuss these three types of generalization and identify neural network architectures that meet these requirements. We have applied our one-class classifier ideas to the problem of automatic target recognition in synthetic aperture radar. We have compared three neural network algorithms: Carpenter and Grossberg`s algorithmic version of the Adaptive Resonance Theory (ART-2A), Kohonen`s Learning Vector Quantization (LVQ), and Reilly and Cooper`s Restricted Coulomb Energy network (RCE). The ART 2-A neural network gives the best results, with 100% within-class, between-class, and out-of-class generalization. Experiments show that the network`s performance is sensitive to vigilance and number of training set presentations.
This report discusses the seventh experiment of the Integral Effects Test (IET-7) series. The experiment was conducted to investigate the effects of preexisting hydrogen in the Surtsey vessel on direct containment heating. Scale models of the Zion reactor pressure vessel (RPV), cavity, instrument tunnel, and subcompartment structures were constructed in the Surtsey Test Facility at Sandia National Laboratories. The RPV was modeled with a melt generator that consisted of a steel pressure barrier, a cast MgO crucible, and a thin steel inner liner. The melt generator/crucible had a hemispherical bottom head containing a graphite limitor plate with a 4-cm exit hole to simulate the ablated hole in the RPV bottom head that would be formed by ejection of an instrument guide tube in a severe nuclear power plant accident. The cavity contained 3.48 kg of water, and the containment basement floor inside the cranewall contained 71 kg of water, which corresponds to scaled condensate levels in the Zion plant. A 43-kg initial charge of iron oxide/aluminum/chromium thermite was used to simulate corium debris on the bottom head of the RPV. Molten thermite was ejected by steam at an initial pressure of 5.9 MPa into the reactor cavity.
Charpy V-notch specimens (ASTM Type A) and 5.74-mm diameter tension test specimens of the Shippingport Reactor Neutron Shield Tank (NST) (outer wall material) were irradiated together with Charpy V-notch specimens of the Oak Ridge National Laboratory (ORNI), High,, Flux Isotope Reactor (HFIR) vessel (shell material), to 5.07 {times} 10{sup 17} n/cm{sup 2}, E > 1 MeV. The irradiation was performed in the Ford Nuclear Reactor (FNR), a test reactor, at a controlled temperature of 54{degrees}C (130{degrees}F) selected to approximate the prior service temperatures of the cited reactor structures. Radiation-induced elevations in the Charpy 41-J transition temperature and the ambient temperature yield strength were small and independent of specimen test orientation (ASTM LT vs. TL). The observations are consistent with prior findings for the two materials (A 212-B plate) and other like materials irradiated at low temperature (< 200{degrees}C) to low fluence. The high radiation embrittlement sensitivity observed in HFIR vessel surveillance program tests was not found in the present accelerated irradiation test. Response to 288{degrees}C-168 h postirradiation annealing was explored for the NST material. Notch ductility recovery was found independent of specimen test orientation but dependent on the temperature within the transition region at which the specimens were tested.
A method is presented for determining the nonlinear stability of undamped flexible structures spinning about a principal axis of inertia. Equations of motion are developed for structures that are free of applied forces and moments. The development makes use of a floating reference frame which follows the overall rigid body motion. Within this frame, elastic deformations are assumed to be given functions of n generalized coordinates. A transformation of variables is devised which shows the equivalence of the equations of motion to a Hamiltonian system with n + 1 degrees of freedom. Using this equivalence, stability criteria are developed based upon the normal form of the Hamiltonian. It is shown that a motion which is spin stable in the linear approximation may be unstable when nonlinear terms are included. A stability analysis of a simple flexible structure is provided to demonstrate the application of the stability criteria. Results from numerical integration of the equations of motion are shown to be consistent with the predictions of the stability analysis. A new method for modeling the dynamics of rotating flexible structures is developed and investigated. The method is similar to conventional assumed displacement (modal) approaches with the addition that quadratic terms are retained in the kinematics of deformation. Retention of these terms is shown to account for the geometric stiffening effects which occur in rotating structures. Computational techniques are developed for the practical implementation of the method. The techniques make use of finite element analysis results, and thus are applicable to a wide variety of structures. Motion studies of specific problems are provided to demonstrate the validity of the method. Excellent agreement is found both with simulations presented in the literature for different approaches and with results from a commercial finite element analysis code. The computational advantages of the method are demonstrated.
We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.
A robotic rover vehicle designed for use in the exploration of the Lunar surface is described. The Robotic All-Terrain Lunar Exploration Rover (R-A.T.L.E.R-) is a four wheeled all-wheel-drive dual-body vehicle. A uniquely simple method of chassis articulation is employed which allows all four wheels to remain in contact with the ground, even while climbing over step-like obstacles as large as [approximately]1.3 wheel diameters. Skid steering and modular construction are used to produce a simple, rugged, highly agile mobility chassis with fewer parts required compared to other designs being considered for planetary exploration missions. The design configuration, mobility parameters, and performance of several existing R.A.T.L.E.R prototypes are discussed, with emphasis on an analysis of the configuration parameters which directly affect the designs mobility performance.
This report describes preliminary experiments to investigate the feasibility of using electron beam (e-beam) radiolysis to destroy the organic compounds in simulated Hanford tank waste. For these experiments a simulated Hanford Tank 101-SY waste mixture was radiolyzed in a {sup 60}Co facility to simulate radiolysis in the waste tank. This slurry was then exposed without dilution to dose levels up to 1600 Mrad at instantaneous dose rates of 2.5 {times} 10{sup 8} and 2. 7 {times} 10{sup 11} rad/s. The inferred dose to destroy all the organic material in the simulated waste, assuming destruction is linear with dose, is 1000 Mrads for the higher dose rate. The cost for organic destruction of Hanford waste at a treatment rate of 20 gpm is roughly estimated to be $10. 60 per gallon. Such a system would treat all the waste in a 1 million gallon Hanford tank in about 40 days. Estimates of capital costs are given in the body of this report. While ferrocyanide destruction was not experimentally investigated in this work, previous experiments by others suggest that ferrocyanide would also be destroyed in such a system.
Artman, W.D.; Sullivan, J.J.; De La O, R.V.; Zawadzkas, G.A.
This report describes the Training and Qualification Program at the Saturn Facility. The main energy source at Saturn is the Saturn accelerator which is used to test military hardware for vulnerability to X-rays, as well as to perform various types of plasma radiation source experiments. The facility is operated and maintained by a staff of twenty scientists and technicians. This program is designed to ensure these personnel are adequately trained and qualified to perform their jobs in a safe and efficient manner. Copies of actual documents used in the program are included as appendices. This program meets all the requirements for training and qualification in the DOE Orders on Conduct of Operations and Quality Assurance, and may be useful to other organizations desiring to come into compliance with these orders.
Experiments were run to determine if oxidized Kovar could be chemically cleaned so that copper would wet the Kovar in a wet hydrogen atmosphere at 1100{degrees}C. We found that a multi-stepped acid etch process cleaned the Kovar so that copper would wet it. We also found that the degree of copper cracking after melting and cool-down correlated well with the degree of wetting.