Publications

Results 97251–97275 of 99,299

Search results

Jump to search filters

Bayou Choctaw Caverns 15 and 17 web analysis

Ehgartner, Brian L.

The relatively thin web of salt that separates Bayou Choctaw Caverns 15 and 17 was evaluated using the finite-element method. The stability calculations provided insight as to whether or not any operationrestrictions or recommendations are necessary. Because of the uncertainty in the exact dimensions of the salt web, various web thicknesses were examined under different operating scenarios that included individual cavern workovers and drawdowns. Cavern workovers were defined by a sudden drop in the oil side pressure at the wellhead to atmospheric. Workovers represent periods of low cavern pressure. Cavern drawdowns were simulated by enlargening the cavern diameters, thus decreasing the thickness of the web. The calculations predict that Cavern 15 dominates the behavior of the web because of its larger diameter. Thus, giventhe choice of caverns, Cavern 17 should be used for oil withdrawal in order to minimize the adverse impacts on web resulting from pressure drops or cavern enlargement. From a stability point of view, maintaining normal pressures in Cavern 15 was found to be more important than operating the caverns as a gallery where both caverns are maintained at the same pressure. However, during a workover, it may be prudent to operate the caverns under similar pressures to avoid the possibility of a sudden pressure surge at the wellhead should the web fail.

More Details

Enhancements to the accident precursor methodology

Camp, Susan E.

A feasibility study for developing an improved tool and improved models for performing event assessments is described. The study indicates that the IRRAS code should become the base tool for performing event assessments, but that modifications would be needed to make it more suitable for routine use. Alternative system modeling approaches are explored and an approach is recommended that is based on improved train-level models. These models are demonstrated for Grand Gulf and Sequoyah. The insights that can be gained from importance measures are also demonstrated. The feasibility of using Individual Plant Examination (IPE) submittals as the basis for train-level models for precursor studies was also examined. The level of reported detail was found to vary widely, but in general, the submittals did not provide sufficient information to fully define the model. The feasibility of developing an industry risk profile from precursor results and of trending precursor results for individual plants were considered. The data sparsity would need to be considered when using the results from these types of evaluations, and because of the extremely sparse data for individual plants we found that trending evaluations for groups of plants would be more meaningful than trending evaluations for individual plants.

More Details

The use of DFT windows in signal-to-noise ratio and harmonic distortion computations

Solomon Jr., O.M.

The discrete Fourier transform (DFT) is used frequently used in the computation of the signal-to-noise ratio (SNR) and harmonic distortion. To estimate the SNR or harmonic distortion, a sine wave is applied to the digitizing system under test. When the data record contains an integer number of cycles of the sine wave, energy from the sine wave and its harmonics does not leak into adjacent DFT frequency bins. Each harmonic occupies one an only one DFT frequency bin. To find the root-mean-square (RMS) value of a harmonic from its DFT, one computes the magnitude of the DFT value at the single frequency of the harmonic. When the DFTs of the fundamental and its harmonics are single lines, the SNR and harmonic distortion are easy to compute. When the data record contains a non-integer number of cycles of the sine wave, energy leaks from the sine wave and its harmonics to adjacent frequencies. The literature contains several approaches to problem of determining which DFT components correspond to a sine wave harmonic. This paper describes how to estimate the RMS value of a sine wave from its DFT with special attention to the selection of the DFT window. The set of DFT frequencies which comprise a harmonic depends on the DFT window, the length of the DFT, and the number of bits of the digitizer. Criteria are developed for choosing the DFT frequencies that correspond to a sine wave. These criteria lead to better choices of DFT windows for SNR and harmonic distortion calculations.

More Details

Graphical programming: On-line robot simulation for telerobotic control

Mcdonald, M.J.; Palmquist, R.D.

Sandia has developed an advanced operational control system approach, caged Graphical Programming, to design and operate robotic waste cleanup and other hazardous duty robotic systems. The Graphical Programming approach produces robot systems that are faster to develop and use, safer in operation, and cheaper overall than altemative teleoperation or autonomous robot control systems. The Graphical Programming approach uses 3-D visualization and simulation software with intuitive operator interfaces for the programming and control of complex robotic systems. Graphical Programming Supervisor software modules allow an operator to command and simulate complex tasks in a graphic preview mode and, when acceptable, command the actual robots and monitor their motions with the graphic system. Graphical Progranuning Supervisors maintain registration with the real world and allow the robot to perform tasks that cannot be accurately represented with models alone by using a combination of model and sensor-based control. This paper describes the Graphical Programming approach, several example control systems that use Graphical Programming, and key features necessary for implementing successful Graphical Programming systems.

More Details

Application of sensors to the control of robotic systems

Harrigan, Raymond W.

Hazardous operations which in the past have been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean up of waste sites in which the exposure of personnel to radiation, chemical, explosive, and other hazardous constituents is unacceptable. Traditional remote manual operations have proven to have very low productivity when compared with unencumbered humans. Computer models augmented by sensing and structured, modular computing environments are proving to be effective in automating many unstructured hazardous tasks.

More Details

Portable fiber optic coupled doppler interferometer system for detonation and shock wave diagnostics

Fleming, Kevin J.

Testing and analysis of shock wave characteristics such as produced by detonators and ground shock propagation frequently require a method of measuring velocity and displacement of the surface of interest. One method of measurement is doppler interferometry. The VISAR (Velocity Interferometer System for Any Reflector) uses doppler interferometry and has pined wide acceptance as the preferred tool for shock measurement. An important asset of VISAR is that it measures velocity and displacement non intrusively. The conventional VISAR is not well suited for portability because of its sensitive components, large power and cooling requirements, and hazardous laser beam. A new VISAR using the latest technology in solid state lasers and detectors has been developed and tested. To further enhance this system's versatility, the unit is fiber optic coupled which allows remote testing, permitting the VISAR to be placed over a kilometer away from the target being measured. Because the laser light is contained in the fiber optic, operation of the system around personnel is far less hazardous. A software package for data reduction has also been developed for use with a personal computer. These new advances have produced a very versatile system with full portability which can be totally powered by batteries or a small generator. This paper describes the solid state VISAR and its peripheral components, fiber optic coupling methods and the fiber optic coupled sensors used for sending and receiving laser radiation.

More Details

Adhesion of thick film Au to alumina ceramics. [Metallization in hybrid microelectronics]

Nelson, G.C.

Thick film Au metallizations are commonly used as conductors in hybrid microelectronics that operate at high frequencies. Discrete components are attached to these conductors with 5OPb/5OIn solder. Intermetallic compounds form and grow in the solid state with time; AuIn[sub 2] is the primary compound formed in the Au-5OPb/50In system. A hybrid failed after being artificially aged to consume all of the Au and then subjected to normal thermal cycle and vibration testing. Postmortem analysis revealed that three capacitors had debonded. The failed parts were studied to determine the failure mechanism(s) and define a parametric study to characterize the mechanisms that bond the Au thick film to the ceramic substrate.

More Details

Report of the technical peer review of Environmental and Molecular Sciences Laboratory

Westrich, Henry R.

This is a peer review report of the Environmental and Molecule Sciences Laboratory. Although the Pretreatment, Treatment, and Waste Forms comments are focused specifically on pretreatment treatment, and waste forms, the group recognizes that the life cycle designation is a somewhat arbitrary breakdown of a series of activities that form a continuum in the environmental restoration and waste management program. Consequently, some of the comments made here are relevant in a broader context or even for EM as a whole. particular, characterization activities pervade all life cycles in environmental restoration/waste management. As we use the term in this section, characterization'' refers to the process monitoring and control that are required during pretreatment and treatment. Most of the technology presentations during the review identified links to support this area and delineated to varying degrees the specific ties to the Hanford Site cleanup requirements. Overall, the EMSL especially its planned facilities, are most impressive, and DOE and PNL are urged to proceed with all due haste toward its completion. Specific issues or concerns identified during the review are included in the following section.

More Details

A heterogeneous graphics procedure for visualization of massively parallel solutions

Jortner, Jeffrey

Scientific visualization is playing an increasingly important role in the analysis and interpretation of massively parallel CFD simulations due to the enormous volume of data that can be generated on these machines. In this paper we will describe the development of a visualization technique based on a parallel analogue to the Marching Cubes algorithm. The algorithm has been developed for Multiple-Instruction, Multiple-Data (MIMD) massively parallel computers and is designed to take advantage of the heterogeneous programming capabilities of the MIMD architecture. We examine several different configurations and conclude that for producing animations the best one, in terms of both frame generation time and disk usage, is to run the two applications heterogeneously and send the resulting geometry description directly to a workstation for rendering, thereby totally eliminating the use of files from the animation process.

More Details

Using a private SMDS/ATM network to provide long-haul supercomputing visualization services

Naegle, J.H.; Testi, N.; Pavlakos, C.; Chen, H.

Sandia National Laboratories is prototyping a service for providing a distributed visualization capability between its Albuquerque, New Mexico and Livermore, California sites. The service will allow TCP/EP LAN users to process computationally intensive codes on the Cray Y-MP 8/864 and use the Application Visualization System, (AVS) running on a visualization server to display the results to desktops in Livermore (or Albuquerque). The long-haul environment presents several technical challenges such as high delays (up to 42 milliseconds), potential error rates, and security concerns which can affect the quality of the services. The network design requires low latency switch gear and high speed LAN connections (FDDI) to make the visualization/computational services useful to the customer. This paper will describe tie network design used and will report performance characteristics of the applications utilizing this service.

More Details

Fullerene superconductors: Phase stability and anomalously low [Tc]'s in some ternary compounds

Schirber, J.E.

AC impedance and x-ray diffraction measurements versus temperature and pressure ternary intercalation compounds are reported. Results support our previously established empirical correlation between superconducting onset temperature and 300K fcc lattice constant. Compounds which do not follow this correlation either phase separate or are otherwise unstable at low T and/or high P.

More Details

Si Atomic Layer Epitaxy based on Si[sub 2]H[sub 6] and remote He plasma bombardment

Picraux, S.T.

We have demonstrated removal of H from a H-passivated Si(100) surface by low energy ([approximately]50 eV) He ion bombardment. The extent of the removal of H from the surface can be controlled by varying the duration of He bombardment and plasma parameters. This, in turn, means that the growth rate by this method can also be controlled. Si[sub 2]H[sub 6] was shown to adsorb in a self-limiting manner on the Si(100) surface.

More Details

Ionospheric effects on a wide-bandwidth, polarimetric, space-based, synthetic-aperture radar

Brock, Billy C.

The earth`s ionosphere consists of an ionized plasma which will interact with any electromagnetic wave propagating through it. The interaction is particularly strong at vhf and uhf frequencies but decreases for higher microwave frequencies. These interaction effects and their relationship to the operation of a wide-bandwidth, synthetic-aperture, space-based radar are examined. Emphasis is placed on the dispersion effects and the polarimetric effects. Results show that high-resolution (wide-bandwidth) and high-quality coherent polarimetrics will be very difficult to achieve below 1 GHz.

More Details

An overview of the SAFSIM computer program

Dobranich, Dean

SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program that provides engineering simulations of user-specified flow networks at the system level. It includes fluid mechanics, heat transfer, and reactor dynamics capabilities. SAFSIM provides sufficient versatility to allow the simulation of almost any flow system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary goals of SAFSIM development. The current capabilities of SAFSIM are summarized and some sample applications are presented. It is applied here to a nuclear thermal propulsion system and nuclear rocket engine test facility.

More Details

Battery compatibility with photovoltaic charge controllers

Harrington, S.R.

Photovoltaic (PV) systems offer a cost-effective solution to provide electrical power for a wide variety of applications, with battery performance playing a major role in their success. This paper presents some of the results of an industry meeting regarding battery specifications and ratings that photovoltaic system designers require, but do not typically have available to them. Communications between the PV industry and the battery industry regarding appropriate specifications have been uncoordinated and poor in the past. This paper also discusses the effort under way involving the PV industry and battery manufacturers, and provides a working draft of specifications to develop and outline the information sorely needed on batteries. The development of this information is referred to as ``Application Notes for Batteries in Photovoltaic Systems.`` The content of these ``notes`` has been compiled from various sources, including the input from the results of a survey on battery use in the photovoltaic industry. Only lead-acid batteries are discussed

More Details

Flow stability in molten-salt tube receivers

Pacheco, James E.

In one design of molten-salt central receivers, the molten salt flows in a serpentine path, down one panel of tubes then up the next and down again continuing in this fashion through the receiver. There have been concerns about this design because in the down flow sections, the heat flux incident on the tubes can cause flow instability since the flow is in direct opposition to the buoyant forces. In extreme cases the buoyant forces can cause flow stagnation or reversal. An analysis of flow stability within individual tubes and down flow sections of receiver panels is presented. When the partial derivative of the pressure drop with respect to mass flow rate is negative ({partial_derivative}{Delta}P/{partial_derivative}{sup {lg_bullet}} < 0), the flow is unstable and could cause serious damage to the receiver. Stability maps are developed that show safe operating regimes where inertial forces dominate over buoyant forces. The data is then normalized using the Grashof and Reynolds numbers.

More Details

United States Department of Energy Granular Flow Advanced Research Objective

Passman, S.L.

United States Department of Energy has established its first Advanced Research Objective in the Solids Transport Program. The scientific, engineering, and management goals are discussed in some detail. Scientific progress to date is summarized. Comments are made on the technical direction of further Advanced Research Objectives.

More Details

Safety and performance of a long life lithium-thionyl chloride battery

Cieslak, Wendy R.

We have developed a Li/SOCl{sub 2} ``D`` cell for applications requiring 10 to 15 years life at very low drain rates, typically less than 150 {mu}A. Maximizing cell safety and reliability, while delivering very good energy density, have been the goals of our study. We have achieved these goals by designing the cell to be application specific. The low-rate cell has been optimized to deliver up to 16 Ah at drain rates of less than 70 mA. By virtue of its low surface area, 145 cm{sub 2}, the cell has demonstrated excellent safety behavior. Safety testing has been performed on individual cells as well as on two-cell and four-cell batteries. Single cells did not vent when short-circuited. We were able to produce benign venting in a two cell string, but only when the string was partially discharged before shorting. The vent mechanism is a 300 psi rupture pressure burst disc manufactured by BS&B Safety Systems. We define benign venting as full opening of the 3/8 in. dia vent hole without deformation of the case. Material is expelled from the cell without flame, and the cell stack remains largely intact. We have not produced venting of the Sandia-designed low rate cell under any other abuse test conditions. The vent functions as an ultimate safety mechanism in the case of severe abuse, but resistance to venting under normal use and mild abuse conditions is key to the achievement of high reliability.

More Details

Cesium separation using crystalline silicotitanate ion exchangers

Stephens, H.P.

A new class of ion-exchange materials that can selectively separate low parts per million level concentrations of Cs{sup +} from 3--6 molar concentrations of Na{sup +} over a wide pH range has recently been developed as a result of a collaborative effort between Sandia National Laboratories and Texas A&M University. The materials, called crystalline silicotitanates, show potential for application in the treatment of aqueous nuclear waste solutions.

More Details

Cation diffusion rates in selected silicate minerals

Cygan, Randall T.

In order to develop a procedure for measuring cation diffusion coefficients below 1000{degrees}C, we have examined the suitability of several diffusion couple configurations involving single crystals of garnet. Initial experiments using an enriched {sup 25}MgCl{sup 2} proved ineffective in providing a uniform and coherent surface for analysis by ion microprobe. A technique was developed using thin film deposition. Thin films ({approximately} 1000 {Angstrom}) of MgO{sub x} (x < 1) can be applied to polished mineral surfaces by evaporating MgO powder under high vacuum with a thermal-resistance strip heater. Thermal resistance evaporation is efficient. Samples of single crystal grossular and pyrope garnets with thin films of MgO, as created by these techniques, were annealed for various times at 800, 900, and 1000{degrees}C, at several log fO{sub 2} values, and 1 atm. Optical, SEM, and ion microprobe analyses reveal no disruption of the interface. Profiles of elemental counts vs depth exhibit expected patterns going through the thin film into the garnet substrate. Our experimental matrix of garnet diffusion runs includes over 60 cut and polished crystals of pyrope composition that are being run at various oxygen fugacity conditions from 600 to 1000{degrees}C.

More Details

Development of ultrathin, dimensionally stable composites for the Superconducting Super Collider (SSC) elementary particle detectors

Gieske, John H.

The Los Alamos National Laboratory (LANL) Mechanical Engineering and Electronics Division, in partnership with Sandia National Laboratories and Programmed Composites, is advancing the development of thin-walled, high modulus short-fiber compression-molded composite materials fabrication. In this paper, we investigate component uniformity, structural integrity, thermal conductivity, and radiation resistance; discuss the scanning-electron microscopic inspection of the graphite fiber distribution and orientation, and describe the process used in selecting the reinforcement fiber length and modulus and for choosing the hydrophobic, cyanate-ester resin.

More Details

A reactor-pumped laser as primary power for ``nuclear`` rocket engines

Monroe, David K.

During the last two decades there has been considerable interest in developing alternatives to conventional chemical propulsion for space missions. Laser propulsion has been identified as a serious contender for the task of inexpensively delivering small payloads to low-earth orbit. Recent advances in the development of lasers powered directly by nuclear reaction products offer the potential for new propulsion methods, namely, reactor-laser propulsion. Such systems would allow ``nuclear propulsion`` without placing nuclear systems in space.

More Details

The use of novel organometallic sources in metal organic chemical vapor deposition (MOCVD)

Biefeld, Robert M.

Alternate organometallic Sb sources are being investigated to improve the characteristics of InSb grown by MOCVD. InSb grown using trimethylindium (TMIn) and trimethylantimony (TMSb) or triethylantimony (TESb) yielded similar quality materials under similar growth conditions. InSb grown using triethylindium (TEIn) and TESB under similar growth conditions yielded very poor quality n-type material. Three new organometallic Sb sources, triisopropyl-antimony (TIPSb), tris(dimethylamino)antimony (TDMASb), and tertiarybutyldimethylantimony (TBDMSb) are being investigated. Growth of InSb using TIPSb, TDMASb, or TBDMSb and TMIn was investigated over 350 to 475{degrees}C. InSb grown from TDMASb had similar properties to InSb grown from TMIn and TMSb when using a similar temperature and V/III ratio range. Growth rates of InSb using TMIn and either TIPSb or TBDMSb at temperatures {le} 425{degrees}C were proportional to both TMIn flow rate and temperature. Surface morphology of InSb grown using either TIPSb or TBDMSb was rough for growth temperatures {le} 425{degrees}C; this may be due to complex decomposition and methyl groups on surface. The InSb with the highest mobility was grown at 400{degrees}C and a V/III ratio of 3 using TIPSb. It was n-type with a carrier concentration of 2.5 {times} 10{sup 15} cm{sup {minus}3} and a mobility of 78,160 cm{sup 2}/Vs at 77 K. Both n- and p-type InSb were grown using TBDMSb with mobilities up to 67,530 and 7773 cm{sup 2}/Vs, respectively at 77 K. Mobility for InSb using either TIPSb or TBDMSb was optimized by going to lower temperatures, pressures, V/III ratios; however, surface morphology improved with higher temperature, pressure, V/III ratio. High mobility InSb with smooth surfaces at T {le} 425{degrees}C was not obtained with TIPSb or TBDMSb and TMIn.

More Details

Mass flow and stability of nanoscale features on Au(111)

Chason, E.

We present the use of an STM to make quantitative observations of time-dependent mass flow associated with the decay of two-dimensional clusters on the Au(lll) surface. When formed and observed in air, layered islands with well-defined edges located on larger terraces are generally found to decay in such a way that their areas decrease linearly in time over periods ranging from minutes to several hours depending on the island size. This is in contrast to the behavior of similar features formed and observed under ultra high vacuum conditions, which do not appear to decay over experimental periods of several days. The linear decay is consistent with models that have been used previously to describe growth of 2-dimensional clusters on surfaces. We discuss possible decay mechanisms`, and the role that adsorbates may play in influencing the decay.

More Details

Destruction of UST organics and nitrates, polymeric organic wastes, and chlorocarbon solvents by steam reforming

Sprung, J.L.

In support of the UST, WeDID, VOC/Non-Arid, and VOC/Arid, and VOC/Arid Integrated Demonstrations, organic contaminants and nitrates in Hanford Underground Storage Tank (UST) wastes, polymeric organics in weapon components, and chlorocarbon soil contaminants have been destroyed by exposure to high-temperature steam during bench tests with a quartz reactor and full-scale tests that used the Synthetica Detoxifier, a commercial one-ton-per-day steam reforming waste destruction system. Reactivation of Granular Activated Carbon (GAC) in the Detoxifier and Thermal Gravimetric Analyses (TGA) of the decomposition of sodium nitrate have also been performed.

More Details
Results 97251–97275 of 99,299
Results 97251–97275 of 99,299