Publications

Results 26–35 of 35

Search results

Jump to search filters

A review of recent research on nonequilibrium solid solution behavior in LiXFePO4

Solid State Ionics

Li, Yiyang

LiXFePO4 (0 < X < 1) is one of the most well-studied cathode battery materials and is notable for its large miscibility gap. Although its phase-separating behaviors under equilibrium conditions have been well documented, recent research has shown that phase separation is suppressed at elevated rates of lithium insertion and removal. Specifically, LiXFePO4 exhibits a nonequilibrium solid solution behavior at elevated cycling rates. This article reviews recent research on nonequilibrium solid solution in LiXFePO4; these insights have been largely enabled by operando characterization techniques. Such studies have not only unambiguously confirmed the existence of this solid solution, but also show how surface reaction and diffusion kinetics ultimately affect phase separation and other spatially nonuniform lithiation and delithiation behavior.

More Details

Electrochemical and Chemical Insertion for Energy Transformation and Switching

Annual Review of Materials Research

Li, Yiyang; Chueh, William C.

Insertion is a widely utilized process for reversibly changing the stoichiometry of a solid through a chemical or electrochemical stimulus. Insertion is instrumental to many energy technologies, including batteries, fuel cells, and hydrogen storage, and has been the subject of extensive investigations. More recently, solid-state switching devices utilizing insertion have drawn significant interest; such devices dynamically switch a material's chemical stoichiometry, changing it from one state to another. This review illustrates the fundamental properties and mechanisms of insertion, including reaction, diffusion, and phase transformation, and discusses recent developments in characterization in these fields. We also review new classes of recently demonstrated insertion devices, which reversibly switch mechanical and electronic properties, and show how the fundamental mechanisms of insertion can be used to design improved switching devices.

More Details
Results 26–35 of 35
Results 26–35 of 35