Determining the Contribution of Ungauged Tributaries to the Mainstem Gila and San Francisco Rivers using GIS and System Dynamics Software
Abstract not provided.
Abstract not provided.
Abstract not provided.
Ground Water
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The complexity of water resource issues, its interconnectedness to other systems, and the involvement of competing stakeholders often overwhelm decision-makers and inhibit the creation of clear management strategies. While a range of modeling tools and procedures exist to address these problems, they tend to be case specific and generally emphasize either a quantitative and overly analytic approach or present a qualitative dialogue-based approach lacking the ability to fully explore consequences of different policy decisions. The integration of these two approaches is needed to drive toward final decisions and engender effective outcomes. Given these limitations, the Computer Assisted Dispute Resolution system (CADRe) was developed to aid in stakeholder inclusive resource planning. This modeling and negotiation system uniquely addresses resource concerns by developing a spatially varying system dynamics model as well as innovative global optimization search techniques to maximize outcomes from participatory dialogues. Ultimately, the core system architecture of CADRe also serves as the cornerstone upon which key scientific innovation and challenges can be addressed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Water Resources Research
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.
Abstract not provided.
Proposed for publication in Water Resources Research.
Time domain reflectometry (TDR) operates by propagating a radar frequency electromagnetic pulse down a transmission line while monitoring the reflected signal. As the electromagnetic pulse propagates along the transmission line, it is subject to impedance by the dielectric properties of the media along the transmission line (e.g., air, water, and sediment), reflection at dielectric discontinuities (e.g., air-water or water-sediment interface), and attenuation by electrically conductive materials (e.g., salts and clays). Taken together, these characteristics provide a basis for integrated stream monitoring, specifically, concurrent measurement of stream stage, channel profile, and aqueous conductivity. Requisite for such application is a means of extracting the desired stream parameters from measured TDR traces. Analysis is complicated by the fact that interface location and aqueous conductivity vary concurrently and multiple interfaces may be present at any time. For this reason a physically based multisection model employing the S11 scatter function and Debeye parameters for dielectric dispersion and loss is used to analyze acquired TDR traces. Here we explore the capability of this multisection modeling approach for interpreting TDR data acquired from complex environments, such as encountered in stream monitoring. A series of laboratory tank experiments was performed in which the depth of water, depth of sediment, and conductivity were varied systematically. Comparisons between modeled and independently measured data indicate that TDR measurements can be made with an accuracy of {+-} 3.4 x 10{sup -3} m for sensing the location of an air-water or water-sediment interface and {+-} 7.4% of actual for the aqueous conductivity.