Publications

Results 1–25 of 94

Search results

Jump to search filters

Wire arc additive manufactured A36 steel performance for marine renewable energy systems

International Journal of Advanced Manufacturing Technology

Adamczyk, Jesse A.; Choi, Hyein; Hernandez-Sanchez, Bernadette A.; Koss, Eun-Kyung; Noell, Philip N.; Spiak, Stephen R.; Puckett, Raymond V.; Escarcega Herrera, Kasandra; Love, Ana S.; Karasz, Erin K.; Neary, Vincent S.; Melia, Michael A.; Heiden, Michael J.

Additive manufacturing has established itself to be advantageous beyond small-scale prototyping, now supporting full-scale production of components for a variety of applications. Despite its integration across industries, marine renewable energy technology is one largely untapped application with potential to bolster clean energy production on the global scale. Wave energy converters (WEC) are one specific facet within this realm that could benefit from AM. As such, wire arc additive manufacturing (WAAM) has been identified as a practical method to produce larger scale marine energy components by leveraging cost-effective and readily available A36 steel feedstock material. The flexibility associated with WAAM can benefit production of WEC by producing more complex structural geometries that are challenging to produce traditionally. Additionally, for large components where fine details are less critical, the high deposition rate of WAAM in comparison to traditional wrought techniques could reduce build times by an order of magnitude. In this context of building and supporting WEC, which experience harsh marine environments, an understanding of performance under large loads and corrosive environments must be understood. Hence, WAAM and wrought A36 steel tensile samples were manufactured, and mechanical properties compared under both dry and corroded conditions. The unique microstructure created via the WAAM process was found to directly correlate to the increased ultimate tensile and yield strength compared to the wrought condition. Static corrosion testing in a simulated saltwater environment in parallel with electrochemical testing highlighted an outperformance of corroded WAAM A36 steel than wrought, despite having a slighter higher corrosion rate. Ultimately, this study shows how marine energy systems may benefit from additive manufacturing components and provides a foundation for future applications of WAAM A36 steel.

More Details

A practical method for modeling temporally-averaged ocean wave frequency-directional spectra for characterizing wave energy climates

Renewable Energy

Ahn, Seongho; Neary, Vincent S.; Ha, Taemin

Wave energy resource characterization investigations have been hindered because frequency-directional wave spectra are not broadly available for many coastal regions due to the insufficient spatial coverage of buoy observation networks and spectral wave model hindcast outputs. We address this problem by developing and validating a practical method for approximating temporally-averaged frequency-directional wave spectra averaged over periods of months or years from bulk wave parameters, which are available at a much greater coverage and resolution than frequency-directional wave spectra. While the temporally averaged frequency-directional wave spectrum over these periods cannot be used for analyzing a single sea state, it aggregates multiple sea states, identifies dominant wave energy systems representing wave climate, and resolves their spectral characteristics. Therefore, modelling temporally averaged frequency-directional wave spectra is of great value for planning and designing wave energy projects, e.g., resource characterization, site assessment, and conceptual design of wave energy converters. Temporally-averaged frequency-directional wave spectra and related important wave energy parameters approximated using this method are found to be more accurate than commonly used parametric wave spectrum models. This method can be applied to a wide range of wave climates given its universality and high accuracy. Also, the availability of bulk wave parameters from multi-decade high-resolution wave model hindcasts is increasing.

More Details

A framework for feasibility-level validation of high-resolution wave hindcast models

Ocean Engineering

Ahn, Seongho; Neary, Vincent S.; Allahdadi, Mohammad N.; He, Ruoying

The value of long-term wave hindcasts for investigating wave climates, wave energy resources, and extreme wave conditions has motivated research developing, calibrating and validating wave hindcast models. Past hindcast model validation studies examined the accuracy in modeling bulk wave parameters of overall sea states without considering the dependency of the model's skill within different sea states. In the present study, a framework for wave hindcast model validation is developed by examining the model accuracy for the most frequently occurring sea states, sea states contributing the most energy to total wave power, sea states associated with hurricane events, and those with the largest model error. Validations using bulk wave parameters and frequency-directional spectra at these key sea states and extreme wave conditions based on univariate and bivariate-contour methods provide insights to improve model accuracy, identifying the model's strong and weak points, and pathways for improvement, e.g., modeling wave-current interactions and adjusting wind data. This study adds to a growing body of research demonstrating that a carefully calibrated and verified spectral wave hindcast model can be used to estimate key wave energy parameters over a wide range of wave energy climates, as well as their spatial, temporal, frequency, directional, and probabilistic distributions.

More Details

Global wave energy resource classification system for regional energy planning and project development

Renewable and Sustainable Energy Reviews

Ahn, Seongho; Neary, Vincent S.; Haas, Kevin A.

Efforts to streamline and codify wave energy resource characterization and assessment for regional energy planning and wave energy converter (WEC) project development have motivated the recent development of resource classification systems. Given the unique interplay between WEC absorption and resource attributes, viz, available wave power frequency, directionality, and seasonality, various consensus resource classification metrics have been introduced. However, the main international standards body for the wave energy industry has not reached consensus on a wave energy resource classification system designed with clear goals to facilitate resource assessment, regional energy planning, project site selection, project feasibility studies, and selection of WEC concepts or archetypes that are most suitable for a given wave energy climate. A primary consideration of wave energy generation is the available energy that can be captured by WECs with different resonant frequency and directional bandwidths. Therefore, the proposed classification system considers combinations of three different wave power classifications: the total wave power, the frequency-constrained wave power, and the frequency-directionally constrained wave power. The dominant wave period bands containing the most wave power are sub-classification parameters that provide useful information for designing frequency and directionally constrained WECs. The bulk of the global wave energy resource is divided into just 22 resource classes representing distinct wave energy climates that could serve as a common language and reference framework for wave energy resource assessment if codified within international standards.

More Details

MINIMIZING COST in A 100% RENEWABLE ELECTRICITY GRID: A CASE STUDY of WAVE ENERGY in CALIFORNIA

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Coe, Ryan G.; Lavidas, George; Bacelli, Giorgio B.; Kobos, Peter H.; Neary, Vincent S.

Wave energy converters have yet to reach broad market viability. Traditionally, levelized cost of energy has been considered the ultimate stage gate through which wave energy developers must pass in order to find success (i.e., the levelized cost of wave energy must be less than that of solar and wind). However, real world energy decisions are not based solely on levelized cost of energy. In this study, we consider the energy mix in California in the year 2045, upon which the state plans to achieve zero carbon energy production. By considering temporal electricity production and consumption, we are able to perform a more informed analysis of the decision process to address this challenge. The results show that, due to high level of ocean wave energy in the winter months, wave energy provides a valuable complement to solar and wind, which have higher production in the summer. Thus, based on this complementary temporal aspect, wave energy appears cost-effective, even when the cost of installation and maintenance is twice that of solar and wind.

More Details

MINIMIZING COST in A 100% RENEWABLE ELECTRICITY GRID: A CASE STUDY of WAVE ENERGY in CALIFORNIA

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Coe, Ryan G.; Lavidas, George; Bacelli, Giorgio B.; Kobos, Peter H.; Neary, Vincent S.

Wave energy converters have yet to reach broad market viability. Traditionally, levelized cost of energy has been considered the ultimate stage gate through which wave energy developers must pass in order to find success (i.e., the levelized cost of wave energy must be less than that of solar and wind). However, real world energy decisions are not based solely on levelized cost of energy. In this study, we consider the energy mix in California in the year 2045, upon which the state plans to achieve zero carbon energy production. By considering temporal electricity production and consumption, we are able to perform a more informed analysis of the decision process to address this challenge. The results show that, due to high level of ocean wave energy in the winter months, wave energy provides a valuable complement to solar and wind, which have higher production in the summer. Thus, based on this complementary temporal aspect, wave energy appears cost-effective, even when the cost of installation and maintenance is twice that of solar and wind.

More Details

Assessing and mapping extreme wave height along the Gulf of Mexico coast

Ahn, Seongho; Neary, Vincent S.; Chartrand, Chris; Pluemer, Sean

The effect of extreme waves on the coastal community includes inundation, loss of habitats, increasing shoreline erosion, and increasing risks to coastal infrastructures (e.g., ports, breakwaters, oil and gas platforms), important for supporting coastal resilience. The coastal communities along the US Gulf of Mexico are very low-lying, which makes the region particularly vulnerable to impacts of extreme waves generated by storm events. We propose assessing and mapping the risks from extreme waves for the Gulf of Mexico coast to support coastal resiliency planning. The risks will be assessed by computing n-year recurring wave height (e.g., 1, 5, 50, 100-year) using 32-year wave hindcast data and various extreme value analysis techniques including Peak- Over-Threshold and Annual Maxima method. The characteristics of the extreme waves, e.g., relations between the mean and extreme wave climates, directions associated with extreme waves, will be investigated. Hazard maps associated with extreme wave heights at different return periods will be generated to help planners identify potential risks and envision places that are less susceptible to future storm damage.

More Details

Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices

Applied Energy

Coe, Ryan G.; Ahn, Seongho; Bacelli, Giorgio B.; Neary, Vincent S.; Kobos, Peter H.

While a great deal of research has been performed to quantify and characterize the wave energy resource, there are still open questions about how a wave energy developer should use this wave resource information to design a wave energy converter device to suit a specific environment or, alternatively, to assess potential deployment locations. It is natural to focus first on the impressive magnitudes of power available from ocean waves, and to be drawn to locations where mean power levels are highest. However, a number of additional factors such as intermittency and capacity factor may be influential in determining economic viability of a wave energy converter, and should therefore be considered at the resource level, so that these factors can influence device design decisions. This study examines a set of wave resource metrics aimed towards this end of bettering accounting for variability in wave energy converter design. The results show distinct regional trends that may factor into project siting and wave energy converter design. Although a definitive solution for the optimal size of a wave energy converter is beyond the reaches of this study, the evidence presented does support the idea that smaller devices with lower power ratings may merit closer consideration.

More Details

Wave energy resource characterization employing joint distributions in frequency-direction-time domain

Applied Energy

Ahn, Seongho; Neary, Vincent S.

Joint and marginal distributions in the frequency, direction, and time domain are employed to demonstrate their value for wave energy resource characterization when full spectra are available. Insights gained through analysis of these distributions support wave energy converter concept design, operation and maintenance. Spatial trends in the wave energy resource and contributing wave energy systems along the continental shelf of the West Coast of the United States are investigated using the most recent two-dimensional wave spectra measurements at four buoys over an eleven year period (2008 to 2018). Resource hot spots and dominant resolved energy resource bands in the frequency-direction-time domain are delineated. Resource attributes, including frequency and directional spreading, and seasonal variability, are characterized using joint distributions and marginal distributions of wave power spectra. North Pacific westerly swells in the winter season, augmented by Aleutian low-pressure southwesterly swells, are the principal suppliers of the dominant resource and main drivers influencing resource attributes. The modification of these systems southward, especially the North Pacific westerly swells, explains the observed spatial resource trends. The dominant resource wave period shifts two seconds to higher wave periods, thirty degrees in the dominant direction band to a more northward orientation, and forward by one month.

More Details

Non-stationary historical trends in wave energy climate for coastal waters of the United States

Ocean Engineering

Ahn, Seongho; Neary, Vincent S.

More Details

Initial conceptual demonstration of control co-design for WEC optimization

Journal of Ocean Engineering and Marine Energy

Coe, Ryan G.; Bacelli, Giorgio B.; Olson, Sterling S.; Neary, Vincent S.; Topper, Mathew B.R.

While some engineering fields have benefited from systematic design optimization studies, wave energy converters have yet to successfully incorporate such analyses into practical engineering workflows. The current iterative approach to wave energy converter design leads to sub-optimal solutions. This short paper presents an open-source MATLAB toolbox for performing design optimization studies on wave energy converters where power take-off behavior and realistic constraints can be easily included. This tool incorporates an adaptable control co-design approach, in that a constrained optimal controller is used to simulate device dynamics and populate an arbitrary objective function of the user’s choosing. A brief explanation of the tool’s structure and underlying theory is presented. To demonstrate the capabilities of the tool, verify its functionality, and begin to explore some basic wave energy converter design relationships, three conceptual case studies are presented. In particular, the importance of considering (and constraining) the magnitudes of device motion and forces in design optimization is shown.

More Details
Results 1–25 of 94
Results 1–25 of 94