Publications

Results 76–100 of 147

Search results

Jump to search filters

Modeling and simulation in validation assessment of failure predictions for high temperature pressurized pipes

Conference Proceedings of the Society for Experimental Mechanics Series

Dempsey, J.F.; Romero, Vicente J.; Antoun, Bonnie R.

A unique quasi-static temperature dependent low strain rate finite element constitutive failure model has been developed at Sandia National Laboratories (Dempsey JF, Antoun B, Wellman G, Romero V, Scherzinger W (2010) Coupled thermal pressurization failure simulations with validation experiments. Presentation at ASME 2010 international mechanical engineering congress & exposition, Vancouver, 12-18 Nov 2010) and is being to be used to predict failure initiation of pressurized components at high temperature. In order to assess the accuracy of this constitutive model, validation experiments of a cylindrical stainless steel pipe, heated and pressurized to failure is performed. This "pipe bomb" is instrumented with thermocouples and a pressure sensor whereby temperatures and pressure are recorded with time until failure occurs. The pressure and thermocouple temperatures are then mapped to a finite element model of this pipe bomb. Mesh refinement and temperature mapping impacts on failure pressure prediction in support of the model validation assessment is discussed. © The Society for Experimental Mechanics Inc. 2014.

More Details

A comparison of methods for representing sparsely sampled random quantities

Romero, Vicente J.; Swiler, Laura P.; Urbina, Angel U.

This report discusses the treatment of uncertainties stemming from relatively few samples of random quantities. The importance of this topic extends beyond experimental data uncertainty to situations involving uncertainty in model calibration, validation, and prediction. With very sparse data samples it is not practical to have a goal of accurately estimating the underlying probability density function (PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a specified percentile range of the actual PDF, say the range between 0.025 and .975 percentiles, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the desired percentile range of the actual PDF. The presence of the two opposing objectives makes the sparse-data uncertainty representation problem interesting and difficult. In this report, five uncertainty representation techniques are characterized for their performance on twenty-one test problems (over thousands of trials for each problem) according to these two opposing objectives and other performance measures. Two of the methods, statistical Tolerance Intervals and a kernel density approach specifically developed for handling sparse data, exhibit significantly better overall performance than the others.

More Details

A comparison of methods for representing and aggregating uncertainties involving sparsely sampled random variables -final results1

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Romero, Vicente J.; Swiler, Laura P.; Urbina, Angel U.

This paper discusses the treatment of uncertainties corresponding to relatively few samples of random-variable quantities. The importance of this topic extends beyond experimental data uncertainty to situations involving uncertainty in model calibration, validation, and prediction. With very sparse samples it is not practical to have a goal of accurately estimating the underlying variability distribution (probability density function, PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a desired percentage of the actual PDF, say 95% included probability, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the random-variable range corresponding to the desired percentage of the actual PDF. The presence of the two opposing objectives makes the sparse-data uncertainty representation problem an interesting and difficult one. In this paper the performance of five uncertainty representation techniques is characterized on twenty-one test problems (over thousands of trials for each problem) according to these two opposing objectives and other performance measures. Two of the methods exhibit significantly better overall performance than the others according to the objectives and performance measures emphasized. © 2012 AIAA.

More Details

Some statistical procedures to refine estimates of uncertainty when sparse data are available for model validation and calibration

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Romero, Vicente J.; Rutherford, Brian; Newcomer, Justin T.

This paper presents some statistical concepts and techniques for refining the expression of uncertainty arising from: a) random variability (aleatory uncertainty) of a random quantity; and b) contributed epistemic uncertainty due to limited sampling of the random quantity. The treatment is tailored to handling experimental uncertainty in a context of model validation and calibration. Two particular problems are considered. One involves deconvolving random measurement error from measured random response. The other involves exploiting a relationship between two random variates of a system and an independently characterized probability density of one of the variates.

More Details

An initial comparison of methods for representing and aggregating experimental uncertainties involving sparse data

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Romero, Vicente J.; Swiler, Laura P.; Urbina, Angel U.

This paper discusses the handling and treatment of uncertainties corresponding to relatively few data samples in experimental characterization of random quantities. The importance of this topic extends beyond experimental uncertainty to situations where the derived experimental information is used for model validation or calibration. With very sparse data it is not practical to have a goal of accurately estimating the underlying variability distribution (probability density function, PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a desired percentage of the actual PDF, say 95% included probability, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the random-variable range corresponding to the desired percentage of the actual PDF. The performance of a variety of uncertainty representation techniques is tested and characterized in this paper according to these two opposing objectives. An initial set of test problems and results is presented here from a larger study currently underway.

More Details

Elements of a pragmatic approach for dealing with bias and uncertainty in experiments through predictions : experiment design and data conditioning; %22real space%22 model validation and conditioning; hierarchical modeling and extrapolative prediction

Romero, Vicente J.

This report explores some important considerations in devising a practical and consistent framework and methodology for utilizing experiments and experimental data to support modeling and prediction. A pragmatic and versatile 'Real Space' approach is outlined for confronting experimental and modeling bias and uncertainty to mitigate risk in modeling and prediction. The elements of experiment design and data analysis, data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. Rationale is given for the various choices underlying the Real Space end-to-end approach. The approach adopts and refines some elements and constructs from the literature and adds pivotal new elements and constructs. Crucially, the approach reflects a pragmatism and versatility derived from working many industrial-scale problems involving complex physics and constitutive models, steady-state and time-varying nonlinear behavior and boundary conditions, and various types of uncertainty in experiments and models. The framework benefits from a broad exposure to integrated experimental and modeling activities in the areas of heat transfer, solid and structural mechanics, irradiated electronics, and combustion in fluids and solids.

More Details
Results 76–100 of 147
Results 76–100 of 147