Publications

Results 226–250 of 306

Search results

Jump to search filters

Band offsets of La2O3 on (0001) GaN grown by reactive molecular-beam epitaxy

Applied Physics Letters

Ihlefeld, Jon F.; Brumbach, Michael T.; Atcitty, Stanley

La2O3 films were prepared on (0001)-oriented GaN substrates via reactive molecular-beam epitaxy. Film orientation and phase were assessed using reflection high-energy electron and X-ray diffraction. Films were observed to grow as predominantly hexagonal La2O3 for thicknesses less than 10 nm while film thickness greater than 10 nm favored mixed cubic and hexagonal symmetries. Band offsets were characterized by X-ray photoelectron spectroscopy on hexagonally symmetric films and valence band offsets of 0.63 ± 0.04 eV at the La2O3/GaN interface were measured. A conduction band offset of approximately 1.5 eV could be inferred from the measured valence band offset. © 2013 AIP Publishing LLC.

More Details

GaN-based wide-bandgap power switching devices: From atoms to the grid

ECS Transactions

Atcitty, Stanley; Kaplar, Robert; Dasgupta, Sandeepan; Marinella, Matthew; Armstrong, Andrew A.; Biedermann, Laura B.; Smith, Mark A.

Emerging semiconductor switches based on the wide-bandgap semiconductor GaN have the potential to significantly improve the efficiency of portable power applications such as transportable energy storage. Such applications are likely to become more widespread as renewables such as wind and solar continue to come on-line. However, the long-term reliability of GaN-based power devices is relatively unexplored. In this paper, we describe joint work between Sandia National Laboratories and MIT on highvoltage AlGaN/GaN high electron mobility transistors. It is observed that the nature of current collapse is a strong function of bias conditions as well as device design, where factors such as Al composition in the barrier layer and surface passivation play a large role. Thermal and optical recovery experiments are performed to ascertain the nature of charge trapping in the device. Additionally, Kelvin-force microscopy measurements are used to evaluate the surface potential within the device. © The Electrochemical Society.

More Details
Results 226–250 of 306
Results 226–250 of 306