Non-equilibrium gas modeling
Abstract not provided.
Abstract not provided.
Abstract not provided.
Collection of Technical Papers - 39th AIAA Thermophysics Conference
An experimental apparatus is described that measures gas-surface thermal accommodation coefficients from the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation coefficients are determined from the pressure dependence of the heat flux at a fixed plate separation. The apparatus is designed to conduct tests with a variety of gases in contact with interchangeable, well-characterized surfaces of various materials (e.g., metals, ceramics, semiconductors) with various surface finishes (e.g., smooth, rough). Experiments are reported for three gases (argon, nitrogen, and helium) in contact with pairs of 304 stainless steel plates prepared with one of two finishes: lathe-machined or mirror-polished. For argon and nitrogen, the measured accommodation coefficients for machined and polished plates are near unity and independent of finish to within experimental uncertainty. For helium, the accommodation coefficients are much lower and show a slight variation with surface roughness. Two different methods are used to determine the accommodation coefficient from experimental data: the Sherman-Lees formula and the GTR formula. These approaches yield values of 0.87 and 0.94 for argon, 0.80 and 0.86 for nitrogen, 0.36 and 0.38 for helium with the machined finish, and 0.40 and 0.42 for helium with the polished finish, respectively, with an uncertainty of ±0.02. The GTR values for argon and nitrogen are generally in better agreement with the results of other investigators than the Sherman-Lees values are, and both helium results are in reasonable agreement with values in the literature.
Collection of Technical Papers - 39th AIAA Thermophysics Conference
The convergence behavior of the Direct Simulation Monte Carlo (DSMC) method is investigated for transient flows. Two types of flows are considered: a Couette-like flow, in which an initial velocity profile decays in time, and a Fourier-like flow, in which an initial temperature profile decays in time. DSMC results are presented for hard-sphere argon with Knudsen numbers in the range 0.01-0.4. Low-Knudsen-number DSMC results are compared with Navier-Stokes results. The DSMC discretization errors from finite time step and finite cell size (in the limit of infinite number of computational molecules per cell) are compared with the predictions of Green-Kubo theory for conditions in this regime.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Sensors and Actuators A.
Abstract not provided.
American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS
Noncontinuum gas-phase heat transfer in two microscale geometries is investigated using two computational methods. The motivation is microscale thermal actuation produced by heating-induced expansion of a near-substrate microbeam in air. The first geometry involves a 1-μm microgap filled with gas and bounded by parallel solid slabs. The second geometry involves a heated I-shaped microbeam 2 μm from the adjacent substrate, with gas in between. Two computational methods are applied. The Navier-Stokes slip-jump (NSSJ) method uses continuum heat transfer in the gas, with temperature jumps at boundaries to treat noncontinuum effects. The Direct Simulation Monte Carlo (DSMC) method uses computational molecules to simulate noncontinuum gas behavior accurately. For the microgap, the heat-flux values from both methods are in good agreement for all pressures and accommodation coefficients. For the microbeam, there is comparably good agreement except for cases with low pressures and near-unity accommodation coefficients. The causes of this discrepancy are discussed. Copyright © 2005 by ASME.
Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.
Abstract not provided.
Proposed for publication in Physics of Fluids.
Abstract not provided.
AIP Conference Proceedings
For gas flows in microfluidic configurations, the Knudsen layer close to the wall can comprise a substantial part of the entire flowfield and has a major effect on quantities such as the mass flow rate through micro devices. The Knudsen layer itself is characterized by a highly nonlinear relationship between the viscous stress and the strain rate of the gas, so even if the Navier-Stokes equations can be used to describe the core gas flow they are certainly inappropriate for the Knudsen layer itself. In this paper we propose a "wall-function" model for the stress/strain rate relations in the Knudsen layer. The constitutive structure of the Knudsen layer has been derived from results from kinetic theory for isothermal shear flow over a planar surface. We investigate the ability of this simplified model to predict Knudsen-layer effects in a variety of configurations. We further propose a semi-empirical Knudsen-number correction to this wall function, based on high-accuracy DSMC results, to extend the predictive capabilities of the model to greater degrees of rarefaction. © 2005 American Institute of Physics.
Physics of Fluids
The Knudsen layer is an important rarefaction phenomenon in gas flows in and around microdevices. Its accurate and efficient modeling is of critical importance in the design of such systems and in predicting their performance. In this paper we investigate the potential that higher-order continuum equations may have to model the Knudsen layer, and compare their predictions to high-accuracy DSMC (direct simulation Monte Carlo) data, as well as a standard result from kinetic theory. We find that, for a benchmark case, the most common higher-order continuum equation sets (Grad's 13 moment, Burnett, and super-Burnett equations) cannot capture the Knudsen layer. Variants of these equation families have, however, been proposed and some of them can qualitatively describe the Knudsen layer structure. To make quantitative comparisons, we obtain additional boundary conditions (needed for unique solutions to the higher-order equations) from kinetic theory. However, we find the quantitative agreement with kinetic theory and DSMC data is only slight. © 2005 American Institute of Physics.
A combined experimental/modeling study was conducted to better understand the critical role of gas-surface interactions in rarefied gas flows. An experimental chamber and supporting diagnostics were designed and assembled to allow simultaneous measurements of gas heat flux and inter-plate gas density profiles in an axisymmetric, parallel-plate geometry. Measurements of gas density profiles and heat flux are made under identical conditions, eliminating an important limitation of earlier studies. The use of in situ, electron-beam fluorescence is demonstrated as a means to measure gas density profiles although additional work is required to improve the accuracy of this technique. Heat flux is inferred from temperature-drop measurements using precision thermistors. The system can be operated with a variety of gases (monatomic, diatomic, polyatomic, mixtures) and carefully controlled, well-characterized surfaces of different types (metals, ceramics) and conditions (smooth, rough). The measurements reported here are for 304 stainless steel plates with a standard machined surface coupled with argon, helium, and nitrogen. The resulting heat-flux and gas-density-profile data are analyzed using analytic and computational models to show that a simple Maxwell gas-surface interaction model is adequate to represent all of the observations. Based on this analysis, thermal accommodation coefficients for 304 stainless steel coupled with argon, nitrogen, and helium are determined to be 0.88, 0.80, and 0.38, respectively, with an estimated uncertainty of {+-}0.02.
Journal of Microelectromechanical Systems
An improved gas-damping model for the out-of-plane motion of a near-substrate microbeam is developed based on the Reynolds equation (RE). A boundary condition for the RE is developed that relates the pressure at the beam edge to the beam motion. The coefficients in this boundary condition are determined from Navier-Stokes slip-jump (NSSJ) simulations for small slip lengths (relative to the gap height) and from direct simulation Monte Carlo (DSMC) molecular gas dynamics simulations for larger slip lengths. This boundary condition significantly improves the accuracy of the RE when the microbeam width is only slightly greater than the gap height between the microbeam and the substrate. The improved RE model is applied to microbeams fabricated using the SUMMiT V process. © 2004 IEEE.
Aerosol Science and Technology
A general, approximate expression is described that can be used to predict the thermophoretic force on a free-molecular, motionless, spherical particle suspended in a quiescent gas with a temperature gradient. The thermophoretic force is equal to the product of an order-unity coefficient, the gas-phase translational heat flux, the particle cross-sectional area, and the inverse of the mean molecular speed. Numerical simulations are used to test the accuracy of this expression for monatomic gases, polyatomic gases, and mixtures thereof. Both continuum and noncontinuum conditions are examined; in particular, the effects of low pressure, wall proximity, and high heat flux are investigated. The direct simulation Monte Carlo (DSMC) method is used to calculate the local molecular velocity distribution, and the force-Green's-function method is used to calculate the thermophoretic force. The approximate expression is found to predict the calculated thermophoretic force to within 10% for all cases examined.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
The molecular velocity distribution of a gas with heat flow was analyzed using Bird's direct simulation Monte Carlo (DSMC) method. Large numbers of computational molecules represented the gas in DSMC. Chapman-Enskog behavior was obtained for inverse-power-law molecules at continuum nonequilibrium conditions. It was shown that the Sonine-polynomial coefficients differ systematically from their continuum values as the local Knudsen number is increased, at noncontinuum nonequilibrium conditions.
A Micro Electro Mechanical System (MEMS) typically consists of micron-scale parts that move through a gas at atmospheric or reduced pressure. In this situation, the gas-molecule mean free path is comparable to the geometric features of the microsystem, so the gas flow is noncontinuum. When mean-free-path effects cannot be neglected, the Boltzmann equation must be used to describe the gas flow. Solution of the Boltzmann equation is difficult even for the simplest case because of its sevenfold dimensionality (one temporal dimension, three spatial dimensions, and three velocity dimensions) and because of the integral nature of the collision term. The Direct Simulation Monte Carlo (DSMC) method is the method of choice to simulate high-speed noncontinuum flows. However, since DSMC uses computational molecules to represent the gas, the inherent statistical noise must be minimized by sampling large numbers of molecules. Since typical microsystem velocities are low (< 1 m/s) compared to molecular velocities ({approx}400 m/s), the number of molecular samples required to achieve 1% precision can exceed 1010 per cell. The Discrete Velocity Gas (DVG) method, an approach motivated by radiation transport, provides another way to simulate noncontinuum gas flows. Unlike DSMC, the DVG method restricts molecular velocities to have only certain discrete values. The transport of the number density of a velocity state is governed by a discrete Boltzmann equation that has one temporal dimension and three spatial dimensions and a polynomial collision term. Specification and implementation of DVG models are discussed, and DVG models are applied to Couette flow and to Fourier flow. While the DVG results for these benchmark problems are qualitatively correct, the errors in the shear stress and the heat flux can be order-unity even for DVG models with 88 velocity states. It is concluded that the DVG method, as described herein, is not sufficiently accurate to simulate the low-speed gas flows that occur in microsystems.