In-situ Irradiation, Helium Implantation and Heating to Elucidate Mechanisms in Tungsten Alloys [Slides]
In situ TEM/SEM microscopy to investigate the structural evolution that occurs due to various extreme environments
In situ TEM/SEM microscopy to investigate the structural evolution that occurs due to various extreme environments
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nano Letters
Mastery of order-disorder processes in highly nonequilibrium nanostructured oxides has significant implications for the development of emerging energy technologies. However, we are presently limited in our ability to quantify and harness these processes at high spatial, chemical, and temporal resolution, particularly in extreme environments. Here, we describe the percolation of disorder at the model oxide interface LaMnO3/SrTiO3, which we visualize during in situ ion irradiation in the transmission electron microscope. We observe the formation of a network of disorder during the initial stages of ion irradiation and track the global progression of the system to full disorder. We couple these measurements with detailed structural and chemical probes, examining possible underlying defect mechanisms responsible for this unique percolative behavior.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Materialia
Nanocrystalline Al thin films have been strained in situ in a transmission electron microscope using two separate nanomechanical techniques involving a push-to-pull device and a microelectromechanical system (MEMS) device. Deformation-induced grain growth was observed to occur via stress-assisted grain boundary migration with extensive grain growth occurring in the necked region, indicating that the increase in local stress drives the boundary migration. Under applied tensile stresses close to the ultimate tensile strength of 450 MPa for a nanocrystalline Al specimen, measured boundary migration speeds are 0.2 – 0.7 nm s−1 for grains outside necked region and increases to 2.5 nm s−1 for grains within the necked region where the local estimated tensile stresses are elevated to around 630 MPa. By tracking grain boundary motion over time, molecular dynamics simulations showed qualitative agreement in terms of pronounced grain boundary migration with the experimental observations. The combined in situ observation and molecular dynamics simulation results underscore the important role of stress-driven grain growth in plastically deforming nanocrystalline metals, leading to intergranular fracture through predominant grain boundary sliding in regions with large localized deformation.
Journal of Nuclear Materials
Ferritic/martensitic steels, such as HT-9, are known for their complex microstructural features and mechanical properties. In this paper, in-situ micro-tensile tests and traditional fractography methods were utilized to study the fracture behavior of proton-irradiated HT-9 steels. First, to evaluate the viability of micro-tensile tests for nuclear material qualification process, meso‑tensile tests on as-received HT-9 steels were performed. Fracture mechanisms of unirradiated HT-9 steels at both length scales were compared and underlying mechanisms discussed. The direct comparison of micro- and meso‑scale data shows a distinctive size effect demonstrated by the increase in yield stress (YS). Upon completion of initial assessment, specimens were irradiated with 4 MeV+ protons to three fluences, all of which were lower than 0.01 displacements per atom (dpa). As expected, the YS increases with irradiation. However, at 7 × 10−3 dpa, the reversal of the trend was observed, and the YS exhibited sharp decline. We demonstrate that at lower length scales, grain structure has a more profound impact on the mechanical properties of irradiated materials, which provides information needed to fill in the gap in current understanding of the HT-9 fracture at different length scales.
IEEE Transactions on Nuclear Science
In this article, we have evaluated the Read-Retry (RR) functionality of the 3-D NAND chip of multilevel-cell (MLC) configuration after total ionization dose (TID) exposure. The RR function is typically offered in the high-density state-of-the-art NAND memory chips to recover data once the default memory read method fails to correct data with error correction codes (ECCs). In this work, we have applied the RR method on the irradiated 3-D NAND chip that was exposed with a Co-60 gamma-ray source for TID up to 50 krad (Si). Based on our experimental evaluation results, we have proposed an algorithm to efficiently implement the RR method to extend the radiation tolerance of the NAND memory chip. Our experimental evaluation shows that the RR method coupled with ECC can ensure data integrity of MLC 3-D NAND for TID up to 50 krad (Si).
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry. C
While there is no known fundamental lower limit to the thermal conductivity of a material, the lowest thermal conductivities are typically found in amorphous and strongly disordered materials, not highly crystalline materials. Here, we demonstrate a surprising nanostructuring route to ultralow thermal conductivity in a large-unit-cell oxide crystal (Fe3O4) containing close-packed nanoscale pores. The electrical conductivity of this material reduces by a factor of 5 relative to dense v, independent of pore size. In contrast, thermal conductivity has a strong dependence on pore size with a factor of 40 of suppression relative to dense Fe3O4 for 40 nm pores vs a factor of 5 for 500 nm pores. The matrix thermal conductivity of Fe3O4 containing 40 nm pores falls below the predicted minimum thermal conductivity by a factor of 3. Finally, we attribute this to strong acoustic phonon scattering and intrinsically limited contributions to thermal conductivity from optical phonons with small dispersion.
Journal of Materials Science
Abstract: Multimodal in-situ experiments are the wave of the future, as this approach will permit multispectral data collection and analysis during real-time nanoscale observation. In contrast, the evolution of technique development in the electron microscopy field has generally trended toward specialization and subsequent bifurcation into more and more niche instruments, creating a challenge for reintegration and backward compatibility for in-situ experiments on state-of-the-art microscopes. We do not believe this to be a requirement in the field; therefore, we propose an adaptive instrument that is designed to allow nearly simultaneous collection of data from aberration-corrected transmission electron microscopy (TEM), probe-corrected scanning transmission electron microscopy, ultrafast TEM, and dynamic TEM with a flexible in-situ testing chamber, where the entire instrument can be modified as future technologies are developed. The value would be to obtain a holistic understanding of the underlying physics and chemistry of the process-structure–property relationships in materials exposed to controlled extreme environments. Such a tool would permit the ability to explore, in-situ, the active reaction mechanisms in a controlled manner emulating those of real-world applications with nanometer and nanosecond resolution. If such a powerful tool is developed, it has the potential to revolutionize our materials understanding of nanoscale mechanisms and transients. Graphical Abstract: [Figure not available: see fulltext.].
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nanoscale
Nanocrystalline (NC) metals suffer from an intrinsic thermal instability; their crystalline grains undergo rapid coarsening during processing treatments or under service conditions. Grain boundary (GB) solute segregation has been proposed to mitigate grain growth and thermally stabilize the grain structures of NC metals. However, the role of GB character in solute segregation and thermal stability of NC metals remains poorly understood. Herein, we employ high resolution microscopy techniques, atomistic simulations, and theoretical analysis to investigate and characterize the impact of GB character on segregation behavior and thermal stability in a model NC Pt-Au alloy. High resolution electron microscopy along with X-ray energy dispersive spectroscopy and automated crystallographic orientation mapping is used to obtain spatially correlated Pt crystal orientation, GB misorientation, and Au solute concentration data. Atomistic simulations of polycrystalline Pt-Au systems are used to reveal the plethora of GB segregation profiles as a function of GB misorientation and the corresponding impact on grain growth processes. With the aid of theoretical models of interface segregation, the experimental data for GB concentration profiles are used to extract GB segregation energies, which are then used to elucidate the impact of GB character on solute drag effects. Our results highlight the paramount role of GB character in solute segregation behavior. In broad terms, our approach provides future avenues to employ GB segregation as a microstructure design strategy to develop NC metallic alloys with tailored microstructures. This journal is
Journal of Applied Physics
In this study, we report on the thermal conductivity of amorphous carbon generated in diamond via nitrogen ion implantation (N 3 + at 16.5 MeV). Transmission electron microscopy techniques demonstrate amorphous band formation about the longitudinal projected range, localized approximately 7 μm beneath the sample surface. While high-frequency time-domain thermoreflectance measurements provide insight into the thermal properties of the near-surface preceding the longitudinal projected range depth, a complimentary technique, steady-state thermoreflectance, is used to probe the thermal conductivity at depths which could not otherwise be resolved. Through measurements with a series of focusing objective lenses for the laser spot size, we find the thermal conductivity of the amorphous region to be approximately 1.4 W m-1 K-1, which is comparable to that measured for amorphous carbon films fabricated through other techniques.
Abstract not provided.
Microscopy Today
In-situ transmission electron microscopy (TEM) provides an avenue to explore time-dependent nanoscale material changes induced by a wide range of environmental conditions that govern material performance and degradation. The In-situ Ion Irradiation TEM (I3TEM) at Sandia National Laboratories is a JEOL 2100 microscope that has been highly modified with an array of hardware and software that makes it particularly well suited to explore fundamental mechanisms that arise from coupled extreme conditions. Here, examples pertaining to multibeam ion irradiation, rapid thermal cycling, and nanomechanical testing on the I3TEM are highlighted, along with prospective advancements in the field of in-situ microscopy.
Materials Letters
In this study, we explore the interaction of electron wind force (EWF) with defects originating from ion irradiation in-situ inside a transmission electron microscope. Nanocrystalline gold specimens were self-ion irradiated to a dose of 5 × 1015 ions/cm2 (45 displacement per atom) to generate a high density of displacement damage. We also developed a molecular dynamics simulation model to understand the associated atomic scale mechanisms. Both experiments and simulations show that the EWF can impart significant defect mobility even at low temperatures, resulting in the migration and elimination of defects in a few minutes. We propose that the EWF interacts with defects to create highly glissile Shockley partial dislocations, which makes the fast and low temperature defect annihilation possible.
Abstract not provided.