Publications

Results 26–42 of 42

Search results

Jump to search filters

Mapping of 1D beam loads to the 3D wind blade for buckling analysis

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Berg, Jonathan C.; Paquette, Joshua P.; Resor, Brian R.

This paper discusses the development of a consistent methodology for mapping one-dimensional distributed beam loads to a three-dimensional shell structure. The resultant force distribution is a linear approximation to the actual aerodynamic pressure distribution but is sufficient to obtain accurate strain and displacement results. The purpose of the mapping technique is to apply more realistic wind loads to the shell model of a wind turbine blade without the need to set up and run expensive computational fluid dynamics or fluid structure interaction problems. Subsequent buckling and stress analysis reveal how this approach compares to other simplified methods of defining the loads. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

Reference Model 2: "Rev 0" Rotor Design

Barone, Matthew F.; Berg, Jonathan C.; Griffith, Daniel G.

The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

More Details

System ID modern control algorithms for active aerodynamic load control and impact on gearbox loading

Resor, Brian R.; Berg, Jonathan C.

Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed in the context of multiple sensors and active control devices (such as flaps) distributed over the length of the blade, most work to date has been limited to consideration of a single control device per blade with very basic Proportional Derivative controllers, due to limitations in the aeroservoelastic codes used to perform turbine simulations. This work utilizes a new aeroservoelastic code developed at Delft University of Technology to model the NREL/Upwind 5 MW wind turbine to investigate the relative advantage of utilizing multiple-device AALC. System identification techniques are used to identify the frequencies and shapes of turbine vibration modes, and these are used with modern control techniques to develop both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) LQR flap controllers. Comparison of simulation results with these controllers shows that the MIMO controller does yield some improvement over the SISO controller in fatigue load reduction, but additional improvement is possible with further refinement. In addition, a preliminary investigation shows that AALC has the potential to reduce off-axis gearbox loads, leading to reduced gearbox bearing fatigue damage and improved lifetimes.

More Details
Results 26–42 of 42
Results 26–42 of 42