Publications

Results 151–175 of 189

Search results

Jump to search filters

Low-memory Lagrangian relaxation methods for sensor placement in municipal water networks

World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008

Berry, Jonathan W.; Boman, Erik G.; Phillips, Cynthia A.; Riesen, Lee A.

Placing sensors in municipal water networks to protect against a set of contamination events is a classic p-median problem for most objectives when we assume that sensors are perfect. Many researchers have proposed exact and approximate solution methods for this p-median formulation. For full-scale networks with large contamination event suites, one must generally rely on heuristic methods to generate solutions. These heuristics provide feasible solutions, but give no quality guarantee relative to the optimal placement. In this paper we apply a Lagrangian relaxation method in order to compute lower bounds on the expected impact of suites of contamination events. In all of our experiments with single objectives, these lower bounds establish that the GRASP local search method generates solutions that are provably optimal to to within a fraction of a percentage point. Our Lagrangian heuristic also provides good solutions itself and requires only a fraction of the memory of GRASP. We conclude by describing two variations of the Lagrangian heuristic: an aggregated version that trades off solution quality for further memory savings, and a multi-objective version which balances objectives with additional goals. © 2008 ASCE.

More Details

The TEVA-SPOT toolkit for drinking water contaminant warning system design

World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Murray, Regan; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

We present the TEVA-SPOT Toolkit, a sensor placement optimization tool developed within the USEPA TEVA program. The TEVA-SPOT Toolkit provides a sensor placement framework that facilitates research in sensor placement optimization and enables the practical application of sensor placement solvers to real-world CWS design applications. This paper provides an overview of its key features, and then illustrates how this tool can be flexibly applied to solve a variety of different types of sensor placement problems. © 2008 ASCE.

More Details

Tolerating the community detection resolution limit with edge weighting

Proposed for publication in the Proceedings of the National Academy of Sciences.

Hendrickson, Bruce A.; Laviolette, Randall A.; Phillips, Cynthia A.; Berry, Jonathan W.

Communities of vertices within a giant network such as the World-Wide-Web are likely to be vastly smaller than the network itself. However, Fortunato and Barthelemy have proved that modularity maximization algorithms for community detection may fail to resolve communities with fewer than {radical} L/2 edges, where L is the number of edges in the entire network. This resolution limit leads modularity maximization algorithms to have notoriously poor accuracy on many real networks. Fortunato and Barthelemy's argument can be extended to networks with weighted edges as well, and we derive this corollary argument. We conclude that weighted modularity algorithms may fail to resolve communities with fewer than {radical} W{epsilon}/2 total edge weight, where W is the total edge weight in the network and {epsilon} is the maximum weight of an inter-community edge. If {epsilon} is small, then small communities can be resolved. Given a weighted or unweighted network, we describe how to derive new edge weights in order to achieve a low {epsilon}, we modify the 'CNM' community detection algorithm to maximize weighted modularity, and show that the resulting algorithm has greatly improved accuracy. In experiments with an emerging community standard benchmark, we find that our simple CNM variant is competitive with the most accurate community detection methods yet proposed.

More Details

EXACT: The experimental algorithmics computational toolkit

Proceedings of the 2007 Workshop on Experimental Computer Science

Hart, William E.; Berry, Jonathan W.; Heaphy, Robert T.; Phillips, Cynthia A.

In this paper, we introduce EXACT, the EXperimental Algorithmics Computational Toolkit. EXACT is a software framework for describing, controlling, and analyzing computer experiments. It provides the experimentalist with convenient software tools to ease and organize the entire experimental process, including the description of factors and levels, the design of experiments, the control of experimental runs, the archiving of results, and analysis of results. As a case study for EXACT, we describe its interaction with FAST, the Sandia Framework for Agile Software Testing. EXACT and FAST now manage the nightly testing of several large software projects at Sandia. We also discuss EXACT's advanced features, which include a driver module that controls complex experiments such as comparisons of parallel algorithms. Copyright 2007 ACM.

More Details

LDRD final report : robust analysis of large-scale combinatorial applications

Hart, William E.; Carr, Robert D.; Phillips, Cynthia A.; Watson, Jean-Paul W.

Discrete models of large, complex systems like national infrastructures and complex logistics frameworks naturally incorporate many modeling uncertainties. Consequently, there is a clear need for optimization techniques that can robustly account for risks associated with modeling uncertainties. This report summarizes the progress of the Late-Start LDRD 'Robust Analysis of Largescale Combinatorial Applications'. This project developed new heuristics for solving robust optimization models, and developed new robust optimization models for describing uncertainty scenarios.

More Details

Robust optimization of contaminant sensor placement for community water systems

Mathematical Programming

Carr, Robert D.; Greenberg, Harvey J.; Hart, William E.; Konjevod, Goran; Lauer, Erik; Lin, Henry; Morrison, Tod; Phillips, Cynthia A.

We present a series of related robust optimization models for placing sensors in municipal water networks to detect contaminants that are maliciously or accidentally injected. We formulate sensor placement problems as mixed-integer programs, for which the objective coefficients are not known with certainty. We consider a restricted absolute robustness criteria that is motivated by natural restrictions on the uncertain data, and we define three robust optimization models that differ in how the coefficients in the objective vary. Under one set of assumptions there exists a sensor placement that is optimal for all admissible realizations of the coefficients. Under other assumptions, we can apply sorting to solve each worst-case realization efficiently, or we can apply duality to integrate the worst-case outcome and have one integer program. The most difficult case is where the objective parameters are bilinear, and we prove its complexity is NP-hard even under simplifying assumptions. We consider a relaxation that provides an approximation, giving an overall guarantee of near-optimality when used with branch-and-bound search. We present preliminary computational experiments that illustrate the computational complexity of solving these robust formulations on sensor placement applications.

More Details
Results 151–175 of 189
Results 151–175 of 189