ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
Flux distributions from solar field collectors are typically evaluated using a beam characterization system, which consists of a digital camera with neutral density filters, flux gauge or calorimeter, and water-cooled Lambertian target panel. The pixels in camera image of the flux distribution are scaled by the flux peak value measured with the flux gauge or the total power value measured with the calorimeter. An alternative method, called PHLUX developed at Sandia National Laboratories, can serve the same purpose using a digital camera but without auxiliary instrumentation. The only additional information required besides the digital images recorded from the camera are the direct normal irradiance, an image of the sun using the same camera, and the reflectivity of the receiver or target panel surface. The PHLUX method was evaluated using two digital cameras (Nikon D90 and D3300) at different flux levels on a target panel. The performances of the two cameras were compared to each other and to measurements from a Kendall radiometer. For consistency in comparison of the two cameras, the same focal length lenses and same number of neutral density filters were used. Other camera settings (e.g., shutter speed, f-stop, etc.) were set based on the aperture size and performance of the cameras. The Nikon D3300 has twice the number of pixels as the D90. D3300 provided higher resolution, however, due to the smaller pixel sizes the images were noisier, and the D90 with larger pixels had better response to low light levels. The noise in the D3300, if not corrected, could result in gross overestimation of the irradiance calculations. After corrections to the D3300 flux images, the PHLUX results from the two cameras showed they agreed to within 8% for a peak flux level of 1000 suns on the target, and less than 10% error in the peak flux when compared to the Kendall radiometer.
ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
The high-temperature particle - supercritical carbon dioxide (sCO2) Brayton power system is a promising option for concentrating solar power (CSP) plants to achieve SunShot metrics for high-temperature operation, efficiency, and cost. This system includes a falling particle receiver to collect solar thermal radiation, a dry-cooled sCO2 Brayton power block to produce electricity, and a particle to sCO2 heat exchanger to couple the previous two. While both falling particle receivers and sCO2 Brayton cycles have been demonstrated previously, a high temperature, high pressure particle/sCO2 heat exchanger has never before been demonstrated. Industry experience with similar heat exchangers is limited to lower pressures, lower temperatures, or alternative fluids such as steam. Sandia is partnering with three experienced heat exchanger manufacturers to develop and down-select several designs for the unit that achieves both high performance and low specific cost to retire risks associated with a solar thermal particle/sCO2 power system. This paper describes plans for the construction of a particle sCO2 heat exchanger testbed at Sandia operating above 700 °C and 20 MPa, with the ability to couple directly with a previously-developed falling particle receiver for on-sun testing at the National Solar Thermal Test Facility (NSTTF).
ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
Thermochemical energy storage (TCES) offers the potential for greatly increased storage density relative to sensible-only energy storage. Moreover, heat may be stored indefinitely in the form of chemical bonds via TCES, accessed upon demand, and converted to heat at temperatures significantly higher than current solar thermal electricity production technology and is therefore well-suited to more efficient high-temperature power cycles. The PROMOTES effort seeks to advance both materials and systems for TCES through the development and demonstration of an innovative storage approach for solarized Air-Brayton power cycles and that is based on newly-developed redox-active metal oxides that are mixed ionic-electronic conductors (MIEC). In this paper we summarize the system concept and review our work to date towards developing materials and individual components.
ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
This paper evaluates novel particle release patterns for high-temperature falling particle receivers. Spatial release patterns resembling triangular and square waves are investigated and compared to the conventional straight-line particle release. A design of experiments was developed, and a simulation matrix was developed that investigated three twolevel factors: amplitude, wavelength, and wave type. Results show that the wave-like patterns increased both the particle temperature rise and thermal efficiency of the receiver relative to the straight-line particle release. Larger amplitudes and smaller wavelengths increased the performance by creating a volumetric heating effect that increased light absorption and reduced heat loss. Experiments are also being designed to investigate the hydraulic and thermal performance of these new particle release configurations.
ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
This paper evaluates the on-sun performance of a 1 MW falling particle receiver. Two particle receiver designs were investigated: obstructed flow particle receiver vs.free-falling particle receiver. The intent of the tests was to investigate the impact of particle mass flow rate, irradiance, and particle temperature on the particle temperature rise and thermal efficiency of the receiver for each design. Results indicate that the obstructed flow design increased the residence time of the particles in the concentrated flux, thereby increasing the particle temperature and thermal efficiency for a given mass flow rate. The obstructions, a staggered array of chevronshaped mesh structures, also provided more stability to the falling particles, which were prone to instabilities caused by convective currents in the free-fall design. Challenges encountered during the tests included non-uniform mass flow rates, wind impacts, and oxidation/deterioration of the mesh structures. Alternative materials, designs, and methods are presented to overcome these challenges.
ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
Multiple receiver designs have been evaluated for improved optics and efficiency gains including flat panel, vertical-finned flat panel, horizontal-finned flat panel, and radially finned. Ray tracing using SolTrace was performed to understand the light-trapping effects of the finned receivers. Re-reflections of the fins to other fins on the receiver were captured to give an overall effective solar absorptance. The ray tracing, finite element analysis, and previous computational fluid dynamics showed that the horizontalfinned flat panel produced the most efficient receiver with increased light-trapping and lower overall heat loss. The effective solar absorptance was shown to increase from an intrinsic absorptance of 0.86 to 0.96 with ray trace models. The predicted thermal efficiency was shown in CFD models to be over 95%. The horizontal panels produce a re-circulating hot zone between the panel fins reducing convective loss resulting in a more efficient receiver. The analysis and design of these panels are described with additional engineering details on testing a flat panel receiver and the horizontal-finned receiver at the National Solar Thermal Test Facility. Design considerations include the structure for receiver testing, tube sizing, surrounding heat shielding, and machinery for cooling the receiver tubes.
ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
Direct solar power receivers consist of tubular arrays, or panels, which are typically tubes arranged side by side and connected to an inlet and outlet manifold. The tubes absorb the heat incident on the surface and transfer it to the fluid contained inside them. To increase the solar absorptance, high temperature black paint or a solar selective coating is applied to the surface of the tubes. However, current solar selective coatings degrade over the lifetime of the receiver and must be reapplied, which reduces the receiver thermal efficiency and increases the maintenance costs. This work presents an evaluation of several novel receiver shapes which have been denominated as fractal like geometries (FLGs). The FLGs are geometries that create a light-trapping effect, thus, increasing the effective solar absorptance and potentially increasing the thermal efficiency of the receiver. Five FLG prototypes were fabricated out of Inconel 718 and tested in Sandia's solar furnace at two irradiance levels of ∼15 and 30 W/cm2 and two fluid flow rates. Photographic methods were used to capture the irradiance distribution on the receiver surfaces and compared to results from ray-tracing models. This methods provided the irradiance distribution and the thermal input on the FLGs. Air at nearly atmospheric pressure was used as heat transfer fluid. The air inlet and outlet temperatures were recorded, using a data acquisition system, until steady state was achieved. Computational fluid dynamics (CFD) models, using the Discrete Ordinates (DO) radiation and the k-? Shear Stress Transport (SST) equations, were developed and calibrated, using the test data, to predict the performance of the five FLGs at different air flow rates and irradiance levels. The results showed that relative to a flat plate (base case), the new FLGs exhibited an increase in the effective solar absorptance from 0.86 to 0.92 for an intrinsic material absorptance of 0.86. Peak surface temperatures of ∼1000°C and maximum air temperature increases of ∼200°C were observed. Compared to the base case, the new FLGs showed a clear air outlet temperature increase. Thermal efficiency increases of ∼15%, with respect to the base case, were observed. Several tests, in different days, were performed to assess the repeatability of the results. The results obtained, so far, are very encouraging and display a very strong potential for incorporation in future solar power receivers.