Experimental Evaluation of Multiprecision Strategies for GMRES on GPUs
Abstract not provided.
Abstract not provided.
Communications in Computational Physics
In this paper we introduce EMPIRE-PIC, a finite element method particle-in-cell (FEM-PIC) application developed at Sandia National Laboratories. The code has been developed in C++ using the Trilinos library and the Kokkos Performance Portability Framework to enable running on multiple modern compute architectures while only requiring maintenance of a single codebase. EMPIRE-PIC is capable of solving both electrostatic and electromagnetic problems in two- and three-dimensions to second-order accuracy in space and time. In this paper we validate the code against three benchmark problems - a simple electron orbit, an electrostatic Langmuir wave, and a transverse electromagnetic wave propagating through a plasma. We demonstrate the performance of EMPIRE-PIC on four different architectures: Intel Haswell CPUs, Intel's Xeon Phi Knights Landing, ARM Thunder-X2 CPUs, and NVIDIA Tesla V100 GPUs attached to IBM POWER9 processors. This analysis demonstrates scalability of the code up to more than two thousand GPUs, and greater than one hundred thousand CPUs.
SIAM Journal on Numerical Analysis
We consider the integral definition of the fractional Laplacian and analyze a linearquadratic optimal control problem for the so-called fractional heat equation; control constraints are also considered. We derive existence and uniqueness results, first order optimality conditions, and regularity estimates for the optimal variables. To discretize the state equation we propose a fully discrete scheme that relies on an implicit finite difference discretization in time combined with a piecewise linear finite element discretization in space. We derive stability results and a novel L2(0, T;L2(Ω)) a priori error estimate. On the basis of the aforementioned solution technique, we propose a fully discrete scheme for our optimal control problem that discretizes the control variable with piecewise constant functions, and we derive a priori error estimates for it. We illustrate the theory with one- and two-dimensional numerical experiments.
Abstract not provided.
SIAM Journal on Scientific Computing
Parallel implementations of linear iterative solvers generally alternate between phases of data exchange and phases of local computation. Increasingly large problem sizes and more heterogeneous compute architectures make load balancing and the design of low latency network interconnects that are able to satisfy the communication requirements of linear solvers very challenging tasks. In particular, global communication patterns such as inner products become increasingly limiting at scale. We explore the use of asynchronous communication based on one-sided Message Passing Interface primitives in the context of domain decomposition solvers. In particular, a scalable asynchronous two-level Schwarz method is presented. We discuss practical issues encountered in the development of a scalable solver and show experimental results obtained on a state-of-the-art supercomputer system that illustrate the benefits of asynchronous solvers in load balanced as well as load imbalanced scenarios. Using the novel method, we can observe speedups of up to four times over its classical synchronous equivalent.
Acta Numerica
Partial differential equations (PDEs) are used with huge success to model phenomena across all scientific and engineering disciplines. However, across an equally wide swath, there exist situations in which PDEs fail to adequately model observed phenomena, or are not the best available model for that purpose. On the other hand, in many situations, nonlocal models that account for interaction occurring at a distance have been shown to more faithfully and effectively model observed phenomena that involve possible singularities and other anomalies. Here, we consider a generic nonlocal model, beginning with a short review of its definition, the properties of its solution, its mathematical analysis and of specific concrete examples. We then provide extensive discussions about numerical methods, including finite element, finite difference and spectral methods, for determining approximate solutions of the nonlocal models considered. In that discussion, we pay particular attention to a special class of nonlocal models that are the most widely studied in the literature, namely those involving fractional derivatives. The article ends with brief considerations of several modelling and algorithmic extensions, which serve to show the wide applicability of nonlocal modelling.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Computational Physics
The fractional Laplacian in Rd, which we write as (−Δ)α/2 with α∈(0,2), has multiple equivalent characterizations. Moreover, in bounded domains, boundary conditions must be incorporated in these characterizations in mathematically distinct ways, and there is currently no consensus in the literature as to which definition of the fractional Laplacian in bounded domains is most appropriate for a given application. The Riesz (or integral) definition, for example, admits a nonlocal boundary condition, where the value of a function must be prescribed on the entire exterior of the domain in order to compute its fractional Laplacian. In contrast, the spectral definition requires only the standard local boundary condition. These differences, among others, lead us to ask the question: “What is the fractional Laplacian?” Beginning from first principles, we compare several commonly used definitions of the fractional Laplacian theoretically, through their stochastic interpretations as well as their analytical properties. Then, we present quantitative comparisons using a sample of state-of-the-art methods. We discuss recent advances on nonzero boundary conditions and present new methods to discretize such boundary value problems: radial basis function collocation (for the Riesz fractional Laplacian) and nonharmonic lifting (for the spectral fractional Laplacian). In our numerical studies, we aim to compare different definitions on bounded domains using a collection of benchmark problems. We consider the fractional Poisson equation with both zero and nonzero boundary conditions, where the fractional Laplacian is defined according to the Riesz definition, the spectral definition, the directional definition, and the horizon-based nonlocal definition. We verify the accuracy of the numerical methods used in the approximations for each operator, and we focus on identifying differences in the boundary behaviors of solutions to equations posed with these different definitions. Through our efforts, we aim to further engage the research community in open problems and assist practitioners in identifying the most appropriate definition and computational approach to use for their mathematical models in addressing anomalous transport in diverse applications.
Partial differential equations (PDEs) are used, with huge success, to model phenomena arising across all scientific and engineering disciplines. However, across an equally wide swath, there exist situations in which PDE models fail to adequately model observed phenomena or are not the best available model for that purpose. On the other hand, in many situations, nonlocal models that account for interaction occurring at a distance have been shown to more faithfully and effectively model observed phenomena that involve possible singularities and other anomalies. In this article, we consider a generic nonlocal model, beginning with a short review of its definition, the properties of its solution, its mathematical analysis, and specific concrete examples. We then provide extensive discussions about numerical methods, including finite element, finite difference, and spectral methods, for determining approximate solutions of the nonlocal models considered. In that discussion, we pay particular attention to a special class of nonlocal models that are the most widely studied in the literature, namely those involving fractional derivatives. The article ends with brief considerations of several modeling and algorithmic extensions which serve to show the wide applicability of nonlocal modeling.
Abstract not provided.
Abstract not provided.
The purpose of this paper is to study a Helmholtz problem with a spectral fractional Laplacian, instead ofthe standard Laplacian. Recently, it has been established that such a fractional Helmholtz problem better captures the underlying behavior in Geophysical Electromagnetics. We establish the well-posedness and regularity of this problem. We introduce a hybrid finite element-spectral approach to discretize it and show well-posedness of the discrete system. In addition, we derive a priori discretization error estimates. Finally, we introduce an efficient solver that scales as well as the best possible solver for the classical integer-order Helmholtz equation. We conclude with several illustrative examples that confirm our theoretical findings.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This is the official user guide for MUELU multigrid library in Trilinos version 12.13 (Dev). This guide provides an overview of MUELU, its capabilities, and instructions for new users who want to start using MUELU with a minimum of effort. Detailed information is given on how to drive MUELU through its XML interface. Links to more advanced use cases are given. This guide gives information on how to achieve good parallel performance, as well as how to introduce new algorithms Finally, readers will find a comprehensive listing of available MUELU options. Any options not documented in this manual should be considered strictly experimental.
Abstract not provided.