Publications

Results 8201–8250 of 9,998

Search results

Jump to search filters

A combinatorial method for tracing objects using semantics of their shape

Diegert, Carl F.

We present a shape-first approach to finding automobiles and trucks in overhead images and include results from our analysis of an image from the Overhead Imaging Research Dataset [1]. For the OIRDS, our shape-first approach traces candidate vehicle outlines by exploiting knowledge about an overhead image of a vehicle: a vehicle's outline fits into a rectangle, this rectangle is sized to allow vehicles to use local roads, and rectangles from two different vehicles are disjoint. Our shape-first approach can efficiently process high-resolution overhead imaging over wide areas to provide tips and cues for human analysts, or for subsequent automatic processing using machine learning or other analysis based on color, tone, pattern, texture, size, and/or location (shape first). In fact, computationally-intensive complex structural, syntactic, and statistical analysis may be possible when a shape-first work flow sends a list of specific tips and cues down a processing pipeline rather than sending the whole of wide area imaging information. This data flow may fit well when bandwidth is limited between computers delivering ad hoc image exploitation and an imaging sensor. As expected, our early computational experiments find that the shape-first processing stage appears to reliably detect rectangular shapes from vehicles. More intriguing is that our computational experiments with six-inch GSD OIRDS benchmark images show that the shape-first stage can be efficient, and that candidate vehicle locations corresponding to features that do not include vehicles are unlikely to trigger tips and cues. We found that stopping with just the shape-first list of candidate vehicle locations, and then solving a weighted, maximal independent vertex set problem to resolve conflicts among candidate vehicle locations, often correctly traces the vehicles in an OIRDS scene.

More Details

DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's manual

Adams, Brian M.; Dalbey, Keith D.; Eldred, Michael S.; Gay, David M.; Swiler, Laura P.; Bohnhoff, William J.; Eddy, John P.; Haskell, Karen H.; Hough, Patricia D.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

More Details

DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual

Adams, Brian M.; Dalbey, Keith D.; Eldred, Michael S.; Gay, David M.; Swiler, Laura P.; Bohnhoff, William J.; Eddy, John P.; Haskell, Karen H.; Hough, Patricia D.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

More Details

DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, developers manual

Adams, Brian M.; Dalbey, Keith D.; Eldred, Michael S.; Gay, David M.; Swiler, Laura P.; Bohnhoff, William J.; Eddy, John P.; Haskell, Karen H.; Hough, Patricia D.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

More Details

Teuchos C++ memory management classes, idioms, and related topics, the complete reference : a comprehensive strategy for safe and efficient memory management in C++ for high performance computing

Bartlett, Roscoe B.

More Details

Challenges for high-performance networking for exascale computing

Brightwell, Ronald B.; Barrett, Brian B.; Hemmert, Karl S.

Achieving the next three orders of magnitude performance increase to move from petascale to exascale computing will require a significant advancements in several fundamental areas. Recent studies have outlined many of the challenges in hardware and software that will be needed. In this paper, we examine these challenges with respect to high-performance networking. We describe the repercussions of anticipated changes to computing and networking hardware and discuss the impact that alternative parallel programming models will have on the network software stack. We also present some ideas on possible approaches that address some of these challenges.

More Details

A new pressure relaxation closure model for two%3CU%2B2010%3Ematerial lagrangian hydrodynamics

Kamm, James R.; Rider, William J.

We present a new model for closing a system of Lagrangian hydrodynamics equations for a two-material cell with a single velocity model. We describe a new approach that is motivated by earlier work of Delov and Sadchikov and of Goncharov and Yanilkin. Using a linearized Riemann problem to initialize volume fraction changes, we require that each material satisfy its own pdV equation, which breaks the overall energy balance in the mixed cell. To enforce this balance, we redistribute the energy discrepancy by assuming that the corresponding pressure change in each material is equal. This multiple-material model is packaged as part of a two-step time integration scheme. We compare results of our approach with other models and with corresponding pure-material calculations, on two-material test problems with ideal-gas or stiffened-gas equations of state.

More Details

Resolving local ambiguity using semantics of shape

Diegert, Carl F.

We demonstrate a new semantic method for automatic analysis of wide-area, high-resolution overhead imagery to tip and cue human intelligence analysts to human activity. In the open demonstration, we find and trace cars and rooftops. Our methodology, extended to analysis of voxels, may be applicable to understanding morphology and to automatic tracing of neurons in large-scale, serial-section TEM datasets. We defined an algorithm and software implementation that efficiently finds all combinations of image blobs that satisfy given shape semantics, where image blobs are formed as a general-purpose, first step that 'oversegments' image pixels into blobs of similar pixels. We will demonstrate the remarkable power (ROC) of this combinatorial-based work flow for automatically tracing any automobiles in a scene by applying semantics that require a subset of image blobs to fill out a rectangular shape, with width and height in given intervals. In most applications we find that the new combinatorial-based work flow produces alternative (overlapping) tracings of possible objects (e.g. cars) in a scene. To force an estimation (tracing) of a consistent collection of objects (cars), a quick-and-simple greedy algorithm is often sufficient. We will demonstrate a more powerful resolution method: we produce a weighted graph from the conflicts in all of our enumerated hypotheses, and then solve a maximal independent vertex set problem on this graph to resolve conflicting hypotheses. This graph computation is almost certain to be necessary to adequately resolve multiple, conflicting neuron topologies into a set that is most consistent with a TEM dataset.

More Details

The alliance for computing at the extreme scale

Ang, James A.; Doerfler, Douglas W.; Dosanjh, Sudip S.; Hemmert, Karl S.

Los Alamos and Sandia National Laboratories have formed a new high performance computing center, the Alliance for Computing at the Extreme Scale (ACES). The two labs will jointly architect, develop, procure and operate capability systems for DOE's Advanced Simulation and Computing Program. This presentation will discuss a petascale production capability system, Cielo, that will be deployed in late 2010, and a new partnership with Cray on advanced interconnect technologies.

More Details

Reliability-based design optimization using efficient global reliability analysis

Eldred, Michael S.

Finding the optimal (lightest, least expensive, etc.) design for an engineered component that meets or exceeds a specified level of reliability is a problem of obvious interest across a wide spectrum of engineering fields. Various methods for this reliability-based design optimization problem have been proposed. Unfortunately, this problem is rarely solved in practice because, regardless of the method used, solving the problem is too expensive or the final solution is too inaccurate to ensure that the reliability constraint is actually satisfied. This is especially true for engineering applications involving expensive, implicit, and possibly nonlinear performance functions (such as large finite element models). The Efficient Global Reliability Analysis method was recently introduced to improve both the accuracy and efficiency of reliability analysis for this type of performance function. This paper explores how this new reliability analysis method can be used in a design optimization context to create a method of sufficient accuracy and efficiency to enable the use of reliability-based design optimization as a practical design tool.

More Details

Integrating event detection system operation characteristics into sensor placement optimization

Hart, David B.; Hart, William E.; Mckenna, Sean A.; Phillips, Cynthia A.

We consider the problem of placing sensors in a municipal water network when we can choose both the location of sensors and the sensitivity and specificity of the contamination warning system. Sensor stations in a municipal water distribution network continuously send sensor output information to a centralized computing facility, and event detection systems at the control center determine when to signal an anomaly worthy of response. Although most sensor placement research has assumed perfect anomaly detection, signal analysis software has parameters that control the tradeoff between false alarms and false negatives. We describe a nonlinear sensor placement formulation, which we heuristically optimize with a linear approximation that can be solved as a mixed-integer linear program. We report the results of initial experiments on a real network and discuss tradeoffs between early detection of contamination incidents, and control of false alarms.

More Details

A coarsening method for linear peridynamics

Silling, Stewart A.

A method is obtained for deriving peridynamic material models for a sequence of increasingly coarsened descriptions of a body. The starting point is a known detailed, small scale linearized state-based description. Each successively coarsened model excludes some of the aterial present in the previous model, and the length scale increases accordingly. This excluded material, while not present explicitly in the coarsened model, is nevertheless taken into account implicitly through its effect on the forces in the coarsened material. Numerical examples emonstrate that the method accurately reproduces the effective elastic properties of a composite as well as the effect of a small defect in a homogeneous medium.

More Details

Xyce parallel electronic simulator

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard S.; Mei, Ting M.; Thornquist, Heidi K.; Coffey, Todd S.; Santarelli, Keith R.; Pawlowski, Roger P.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide.

More Details

Xyce parallel electronic simulator release notes

Keiter, Eric R.; Santarelli, Keith R.; Hoekstra, Robert J.; Russo, Thomas V.; Schiek, Richard S.; Mei, Ting M.; Thornquist, Heidi K.; Pawlowski, Roger P.; Coffey, Todd S.

The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. Specific requirements include, among others, the ability to solve extremely large circuit problems by supporting large-scale parallel computing platforms, improved numerical performance and object-oriented code design and implementation. The Xyce release notes describe: Hardware and software requirements New features and enhancements Any defects fixed since the last release Current known defects and defect workarounds For up-to-date information not available at the time these notes were produced, please visit the Xyce web page at http://www.cs.sandia.gov/xyce.

More Details

High fidelity equation of state for xenon : integrating experiments and first principles simulations in developing a wide-range equation of state model for a fifth-row element

Magyar, Rudolph J.; Root, Seth R.; Carpenter, John H.; Mattsson, Thomas M.

The noble gas xenon is a particularly interesting element. At standard pressure xenon is an fcc solid which melts at 161 K and then boils at 165 K, thus displaying a rather narrow liquid range on the phase diagram. On the other hand, under pressure the melting point is significantly higher: 3000 K at 30 GPa. Under shock compression, electronic excitations become important at 40 GPa. Finally, xenon forms stable molecules with fluorine (XeF{sub 2}) suggesting that the electronic structure is significantly more complex than expected for a noble gas. With these reasons in mind, we studied the xenon Hugoniot using DFT/QMD and validated the simulations with multi-Mbar shock compression experiments. The results show that existing equation of state models lack fidelity and so we developed a wide-range free-energy based equation of state using experimental data and results from first-principles simulations.

More Details

Steps toward fault-tolerant quantum chemistry

Taube, Andrew G.

Developing quantum chemistry programs on the coming generation of exascale computers will be a difficult task. The programs will need to be fault-tolerant and minimize the use of global operations. This work explores the use a task-based model that uses a data-centric approach to allocate work to different processes as it applies to quantum chemistry. After introducing the key problems that appear when trying to parallelize a complicated quantum chemistry method such as coupled-cluster theory, we discuss the implications of that model as it pertains to the computational kernel of a coupled-cluster program - matrix multiplication. Also, we discuss the extensions that would required to build a full coupled-cluster program using the task-based model. Current programming models for high-performance computing are fault-intolerant and use global operations. Those properties are unsustainable as computers scale to millions of CPUs; instead one must recognize that these systems will be hierarchical in structure, prone to constant faults, and global operations will be infeasible. The FAST-OS HARE project is introducing a scale-free computing model to address these issues. This model is hierarchical and fault-tolerant by design, allows for the clean overlap of computation and communication, reducing the network load, does not require checkpointing, and avoids the complexity of many HPC runtimes. Development of an algorithm within this model requires a change in focus from imperative programming to a data-centric approach. Quantum chemistry (QC) algorithms, in particular electronic structure methods, are an ideal test bed for this computing model. These methods describe the distribution of electrons in a molecule, which determine the properties of the molecule. The computational cost of these methods is high, scaling quartically or higher in the size of the molecule, which is why QC applications are major users of HPC resources. The complexity of these algorithms means that MPI alone is insufficient to achieve parallel scaling; QC developers have been forced to use alternative approaches to achieve scalability and would be receptive to radical shifts in the programming paradigm. Initial work in adapting the simplest QC method, Hartree-Fock, to this the new programming model indicates that the approach is beneficial for QC applications. However, the advantages to being able to scale to exascale computers are greatest for the computationally most expensive algorithms; within QC these are the high-accuracy coupled-cluster (CC) methods. Parallel coupledcluster programs are available, however they are based on the conventional MPI paradigm. Much of the effort is spent handling the complicated data dependencies between the various processors, especially as the size of the problem becomes large. The current paradigm will not survive the move to exascale computers. Here we discuss the initial steps toward designing and implementing a CC method within this model. First, we introduce the general concepts behind a CC method, focusing on the aspects that make these methods difficult to parallelize with conventional techniques. Then we outline what is the computational core of the CC method - a matrix multiply - within the task-based approach that the FAST-OS project is designed to take advantage of. Finally we outline the general setup to implement the simplest CC method in this model, linearized CC doubles (LinCC).

More Details
Results 8201–8250 of 9,998
Results 8201–8250 of 9,998