Publications

Results 85701–85725 of 99,299

Search results

Jump to search filters

Final report on testing of ACONF technology for the US Coast Guard National Distress Systems : a study for the DOE Energy Storage Systems Program

Corey, Garth P.; Ginn, Jerry W.; Felix, Leanne; Murray, Aaron T.

This report documents the results of a six month test program of an Alternative Configuration (ACONF) power management system design for a typical United States Coast Guard (USCG) National Distress System (NDS) site. The USCG/USDOE funded work was performed at Sandia National Laboratories to evaluate the effect of a Sandia developed battery management technology known as ACONF on the performance of energy storage systems at NDS sites. This report demonstrates the savings of propane gas, and the improvement of battery performance when utilizing the new ACONF designs. The fuel savings and battery performance improvements resulting from ACONF use would be applicable to all current NDS sites in the field. The inherent savings realized when using the ACONF battery management design was found to be significant when compared to battery replacement and propane refueling at the remote NDS sites.

More Details

DART system analysis

Hardwick, Michael F.; Clay, Robert L.; Boggs, Paul T.; Walsh, Edward J.

The Design-through-Analysis Realization Team (DART) is chartered with reducing the time Sandia analysts require to complete the engineering analysis process. The DART system analysis team studied the engineering analysis processes employed by analysts in Centers 9100 and 8700 at Sandia to identify opportunities for reducing overall design-through-analysis process time. The team created and implemented a rigorous analysis methodology based on a generic process flow model parameterized by information obtained from analysts. They also collected data from analysis department managers to quantify the problem type and complexity distribution throughout Sandia's analyst community. They then used this information to develop a community model, which enables a simple characterization of processes that span the analyst community. The results indicate that equal opportunity for reducing analysis process time is available both by reducing the ''once-through'' time required to complete a process step and by reducing the probability of backward iteration. In addition, reducing the rework fraction (i.e., improving the engineering efficiency of subsequent iterations) offers approximately 40% to 80% of the benefit of reducing the ''once-through'' time or iteration probability, depending upon the process step being considered. Further, the results indicate that geometry manipulation and meshing is the largest portion of an analyst's effort, especially for structural problems, and offers significant opportunity for overall time reduction. Iteration loops initiated late in the process are more costly than others because they increase ''inner loop'' iterations. Identifying and correcting problems as early as possible in the process offers significant opportunity for time savings.

More Details

Dipole radiation from a cylindrical hole in the earth

Warne, Larry K.; Johnson, William A.

This report examines the problem of an antenna radiating from a cylindrical hole in the earth and the subsequent far-zone field produced in the upper air half space. The approach used for this analysis was to first examine propagation characteristics along the hole for surrounding geologic material properties. Three cases of sand with various levels of moisture content were considered as the surrounding material to the hole. For the hole diameters and sand cases examined, the radiation through the earth medium was found to be the dominant contribution to the radiation transmitted through to the upper half-space. In the analysis presented, the radiation from a vertical and a horizontal dipole source within the hole is used to determine a closed-form expression for the radiation in the earth medium which represents a modified element factor for the source and hole combination. As the final step, the well-known results for a dipole below a half space, in conjunction with the use of Snell's law to transform the modified element factor to the upper half space, determine closed-form expressions for the far-zone radiated fields in the air region above the earth.

More Details

Total x-ray power measurements in the Sandia LIGA program

Malinowski, Michael E.; Ting, Aili

Total X-ray power measurements using aluminum block calorimetry and other techniques were made at LIGA X-ray scanner synchrotron beamlines located at both the Advanced Light Source (ALS) and the Advanced Photon Source (APS). This block calorimetry work was initially performed on the LIGA beamline 3.3.1 of the ALS to provide experimental checks of predictions of the LEX-D (LIGA Exposure- Development) code for LIGA X-ray exposures, version 7.56, the version of the code in use at the time calorimetry was done. These experiments showed that it was necessary to use bend magnet field strengths and electron storage ring energies different from the default values originally in the code in order to obtain good agreement between experiment and theory. The results indicated that agreement between LEX-D predictions and experiment could be as good as 5% only if (1) more accurate values of the ring energies, (2) local values of the magnet field at the beamline source point, and (3) the NIST database for X-ray/materials interactions were used as code inputs. These local magnetic field value and accurate ring energies, together with NIST database, are now defaults in the newest release of LEX-D, version 7.61. Three dimensional simulations of the temperature distributions in the aluminum calorimeter block for a typical ALS power measurement were made with the ABAQUS code and found to be in good agreement with the experimental temperature data. As an application of the block calorimetry technique, the X-ray power exiting the mirror in place at a LIGA scanner located at the APS beamline 10 BM was measured with a calorimeter similar to the one used at the ALS. The overall results at the APS demonstrated the utility of calorimetry in helping to characterize the total X-ray power in LIGA beamlines. In addition to the block calorimetry work at the ALS and APS, a preliminary comparison of the use of heat flux sensors, photodiodes and modified beam calorimeters as total X-ray power monitors was made at the ALS, beamline 3.3.1. This work showed that a modification of a commercially available, heat flux sensor could result in a simple, direct reading beam power meter that could be a useful for monitoring total X-ray power in Sandia's LIGA exposure stations at the ALS, APS and Stanford Synchrotron Radiation Laboratory (SSRL).

More Details

Studies on the disbonding initiation of interfacial cracks

Mcadams, Brian J.; Pearson, Raymond A.

With the continuing trend of decreasing feature sizes in flip-chip assemblies, the reliability tolerance to interfacial flaws is also decreasing. Small-scale disbonds will become more of a concern, pointing to the need for a better understanding of the initiation stage of interfacial delamination. With most accepted adhesion metric methodologies tailored to predict failure under the prior existence of a disbond, the study of the initiation phenomenon is open to development and standardization of new testing procedures. Traditional fracture mechanics approaches are not suitable, as the mathematics assume failure to originate at a disbond or crack tip. Disbond initiation is believed to first occur at free edges and corners, which act as high stress concentration sites and exhibit singular stresses similar to a crack tip, though less severe in intensity. As such, a 'fracture mechanics-like' approach may be employed which defines a material parameter--a critical stress intensity factor (K{sub c})--that can be used to predict when initiation of a disbond at an interface will occur. The factors affecting the adhesion of underfill/polyimide interfaces relevant to flip-chip assemblies were investigated in this study. The study consisted of two distinct parts: a comparison of the initiation and propagation phenomena and a comparison of the relationship between sub-critical and critical initiation of interfacial failure. The initiation of underfill interfacial failure was studied by characterizing failure at a free-edge with a critical stress intensity factor. In comparison with the interfacial fracture toughness testing, it was shown that a good correlation exists between the initiation and propagation of interfacial failures. Such a correlation justifies the continuing use of fracture mechanics to predict the reliability of flip-chip packages. The second aspect of the research involved fatigue testing of tensile butt joint specimens to determine lifetimes at sub-critical load levels. The results display an interfacial strength ranking similar to that observed during monotonic testing. The fatigue results indicate that monotonic fracture mechanics testing may be an adequate screening tool to help predict cyclic underfill failure; however lifetime data is required to predict reliability.

More Details

Programming future architectures : dusty decks, memory walls, and the speed of light

Rodrigues, Arun

Due to advances in CMOS fabrication technology, high performance computing capabilities have continually grown. More capable hardware has allowed a range of complex scientific applications to be developed. However, these applications present a bottleneck to future performance. Entrenched 'legacy' codes - 'Dusty Decks' - demand that new hardware must remain compatible with existing software. Additionally, conventional architectures faces increasing challenges. Many of these challenges revolve around the growing disparity between processor and memory speed - the 'Memory Wall' - and difficulties scaling to large numbers of parallel processors. To a large extent, these limitations are inherent to the traditional computer architecture. As data is consumed more quickly, moving that data to the point of computation becomes more difficult. Barring any upward revision in the speed of light, this will continue to be a fundamental limitation on the speed of computation. This work focuses on these solving these problems in the context of Light Weight Processing (LWP). LWP is an innovative technique which combines Processing-In-Memory, short vector computation, multithreading, and extended memory semantics. It applies these techniques to try and answer the questions 'What will a next-generation supercomputer look like?' and 'How will we program it?' To that end, this work presents four contributions: (1) An implementation of MPI which uses features of LWP to substantially improve message processing throughput; (2) A technique leveraging extended memory semantics to improve message passing by overlapping computation and communication; (3) An OpenMP library modified to allow efficient partitioning of threads between a conventional CPU and LWPs - greatly improving cost/performance; and (4) An algorithm to extract very small 'threadlets' which can overcome the inherent disadvantages of a simple processor pipeline.

More Details

Toward modeling and simulation of critical national infrastructure interdependencies

Proposed for publication in IIE Transactions.

Beyeler, Walter E.; Brown, Theresa J.

Modern society's physical health depends vitally upon a number of real, interdependent, critical infrastructure networks that deliver power, petroleum, natural gas,water, and communications. Its economic health depends on a number of other infrastructure networks, some virtual and some real, that link residences, industries, commercial sectors, and transportation sectors. The continued prosperity and national security of the US depends on our ability to understand the vulnerabilities of and analyze the performance of both the individual infrastructures and the entire interconnected system of infrastructures. Only then can we respond to potential disruptions in a timely and effective manner. Collaborative efforts among Sandia, other government agencies, private industry, and academia have resulted in realistic models for many of the individual component infrastructures. In this paper, we propose an innovative modeling and analysis framework to study the entire system of physical and economic infrastructures. That framework uses the existing individual models together with system dynamics, functional models, and nonlinear optimization algorithms. We describe this framework and demonstrate its potential use to analyze, and propose a response for, a hypothetical disruption.

More Details
Results 85701–85725 of 99,299
Results 85701–85725 of 99,299