Publications

Results 93526–93550 of 96,771

Search results

Jump to search filters

Scannerless range imaging with a square wave

Proceedings of SPIE - The International Society for Optical Engineering

Muguira, Maritza R.

Scannerless range imaging (SRI) is a unique approach to three dimensional imaging without scanners. SRI does, however, allow a more powerful light source to be used as compared to conventional laser radar (LADAR) systems due to the speed of operation associated with this staring system. As a result, a more efficient method of operation was investigated. As originally conceived, SRI transmits a continuous intensity modulated sinusoidal signal; however, a square wave driver is more energy efficient than a sinusoidal driver. In order to take advantage of this efficiency, a square wave operational methodology was investigated. As a result, four image frames are required for the extraction of range using a square wave to unambiguously resolve all time delays within one time period compared to a minimum of three frames for the sinusoidal wave.

More Details

Improved portable lighting for visual aircraft inspection

Proceedings of SPIE - The International Society for Optical Engineering

Shagam, Richard N.

The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser TM (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

More Details

Smoothing during ion-assisted growth by transient ion beam-induced defects

Materials Research Society Symposium - Proceedings

Kellerman, B.K.

Several studies have shown that the surface morphology can be smoother during simultaneous ion bombardment and growth than during growth alone, however, the atomistic mechanism responsible for the smoothing effect has been difficult to determine. We have developed Monte Carlo simulations of growth and defect diffusion to model the interaction between growth atoms and ion-induced defects and to present a simple atomistic mechanism that describes the effects of low-energy ion bombardment during ion-assisted growth of germanium. Measurements of ion-induced point defect production indicate that a large number of defects exist only temporarily on the surface at typical growth temperatures, because the defects have sufficient mobility to recombine and annihilate. We propose that this ion-induced transient defect population plays a significant role in modifying the dynamic surface morphology. The simulations support a surface smoothing mechanism that involves the destabilization of adatom islands by the transient ion-induced defects. The optimum simulated steady-state surface morphology can be achieved with ion-induced defect production rates less than or equal to 10 defects/ion. We find that low-energy ion bombardment during growth effectively lowers the temperature at which step-flow growth can be achieved.

More Details

Dielectric function and band gaps of Si1-xCx and Si0.924-xGe0.076Cx (0≤x≤0.014) semiconductor alloys grown on Si

Materials Research Society Symposium - Proceedings

Lee, H.; Floro, J.A.; Strane, J.; Lee, S.R.; Jones, E.D.; Mayer, T.; Picraux, S.T.

We have characterized the optical properties of heteroepitaxial Si1-xCx and Si0.924-xGe0.076Cx (0≤x≤0.014) alloys grown on Si substrates by solid phase epitaxy using spectroscopic ellipsometry. The measured dielectric function confirms that the samples are of good crystalline quality. We determined the E1 and E2 band gaps by lineshape-fitting the features in the second derivative spectra of the dielectric functions. Also, we discuss the shift of the band gaps with C concentration arising from strain and chemical alloying.

More Details

Assessment of dry barriers for containment of mobile constituents in the unsaturated zone

Stormont, John C.

A dry barrier may be formed by circulating dry air through a soil layer above or below a waste disposal site, thus reducing the soil moisture content to very low values. Drying a horizontal soil layer creates a barrier to vertical water movement in three ways. First, the drying removes water from the system, intercepting water infiltrating down from the surface. Second, drying a soil layer increases its water storage capacity so the soil will tend to retain rather than transmit water. Third, as a soil layer dries, moisture is removed from progressively smaller interstitial pores so that the hydraulic conductivity of the formation (for liquid flow) decreases. For example, the hydraulic conductivity of a typical sand may decrease by three orders of magnitude as its moisture content is reduced from 20 to 10 percent. This study analyzed the technical and economic feasibility of the subsurface dry barrier concept for containment of a migrating contaminant plume in unsaturated soil. The concept was shown to be a viable option for limiting aqueous migration of pollutants through unsaturated media, with estimated capital costs of between $130,000 and $260,000 for a 1-hectare barrier, and annual operating costs of $10,000 per year.

More Details

Minimizing phylogenetic number to find good evolutionary trees

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Phillips, Cynthia A.

Inferring phylogenetic trees is a fundamental problem in computational-biology. We present a new objective criterion, the phylogenetic number, for evaluating evolutionary trees for species defined by biomolecular sequences or other qualitative characters. The phylogenetic number of a tree T is the maximum number of times that any given character state arises in T. By contrast, the classical parsimonycriterion measures the total number of times that different character states arise in T. We consider the following related problems: finding the tree with minimum phylogenetic number, and computing the phylogenetic number of a given topology in which only the leaves are labeled by species. When the number of states is bounded (as is the case for biomolecular sequence characters), we can solve the second problem in polynomial time. We can also compute a fixed-topology 2-phylogeny (when one exists) for an arbitrary number of states. This algorithm can be used to further distinguish trees that are equal under parsimony. We also consider a number of other related problems.

More Details

Performance characterization of the NASA standard detonator

31st Joint Propulsion Conference and Exhibit

Tarbell, William W.

The NASA Standard Detonator (NSD) is employed in support of a number of current applications, including the Space Shuttle. This effort was directed towards providing test results to characterize the output of this device for its use in a safe and arm device. As part of the investigation, flash X-ray was used to provide stop-motion photographs of the flying metal plate that is created by initiation of the detonator. This provided researchers with a better understanding of the shape and character of the high- velocity disk as it propagated across the gap between the detonator and next assembly. The second portion of the study used a velocity interferometer to evaluate the acceleration and velocity histories of the flying plate, providing a quantified assessment of the detonator’s ability to initiate the explosive in the next explosive.

More Details

Development and production of two explosive components using SCB technology

31st Joint Propulsion Conference and Exhibit

Tarbell, William W.

For many years, explosive components have used hotwires to convert an electrical stimulus into the thermal energy required to initiate the device. A Semi-conductor Bridge (SCB) performs the same function, but with the advantage of requiring approximately 1/10 the input energy of a comparable hotwire, while retaining excellent no-fire characteristics. The SCB also demonstrates faster function times due to its inherently-lower thermal mass. This paper discusses the development and production of two SCB-based devices, the MC4491 Initiator and the MC4492 Actuator. The initiator is designed to shock initiate a linear shaped charge by accelerating a thin metal plate across a small gap. The actuator functions several different components, sewing as either an actuator by producing a rapidly expanding gas to activate piston mechanisms or as an ignitor by providing hot particles for initiating pyrotechnic mixtures. Details are provided on the construction of both devices, methods of assembly, and performance characteristics (function time, flyer velocity, pressure in a closed bomb, heat content, and no-fire and all-fire levels).

More Details

National electrical code changes for 1996 and USA participation in International Energy Agency activities related to photovoltaics safety and grid interconnection

Bower, Ward I.

As photovoltaic (PV) systems gain more acceptance in utility-interactive applications throughout the world, many organizations are placing increasingly higher priorities on writing guidelines, codes and standards. These guidelines and codes are being written to improve safety, installation, acceptance, listing or certification of the PV components or systems. Sandia National Laboratories` PV System Applications Department is working closely with the PV industry to address issues that are associated with fire and personnel safety and with National Electrical Code (NEC) requirements. Additionally, the United States has agreed to participate in two of the International Energy Agency (IEA) Annexes (topical tasks) of the Implementing Agreement for a Cooperative Programme on Photovoltaic Power Systems. This paper describes events and activities associated with the NEC and the IEA that are being led by Sandia National Laboratories with broad participation by the US PV industry.

More Details

SERAPHIM: A propulsion technology for fast trains

SAE Technical Papers

Marder, Barry M.

The Segmented Rail Phased Induction Motor (SERAPHIM) is a compact, pulsed linear induction motor (LIM) offering a unique capability for very high speed train propulsion. It uses technology developed for the Sandia coilgun, an electromagnetic launcher designed to accelerate projectiles to several kilometers per second! Both aluminum cylinders and plates were accelerated to a kilometer per second (Mach 3) by passing through a sequence of coils which were energized at the appropriate time. Although this technology was developed for ultra-high velocity, it can be readily adapted to train propulsion for which, at sea level, the power required to overcome air resistance limits the operational speed to a more modest 300 mph. Here, the geometry is reversed. The coils are on the vehicle and the "projectiles" are fixed along the roadbed. In the 1970's, the Federal Railroad Administration tested a 200 mph train riding on passive wheels and powered by a conventional LIM. In a LIM, electrical windings generate a backward moving wave of magnetic flux in a conducting reaction rail, producing a forward force. SERAPHIM operates not by embedding flux in a conductor, but by excluding it. In this propulsion scheme, pairs of closely spaced coils on the vehicle straddle a segmented aluminum reaction rail. A high frequency current is switched on as a coil pair crosses an edge and remains off as they overtake the next segment. This induces surface currents which repel the coil. In essence, the pulsed coils push off segment edges because at the high frequency of operation, the flux has insufficient time to penetrate. In contrast to conventional LIMs, the performance actually improves with velocity, even for a minimal motor consisting of a single coil pair reacting with a single plate. With either distributed onboard power, a passive wheeled train powered by a SERAPHIM is an attractive alternative to one which is levitated using superconducting magnets (MAGLEV) and propelled by switched electrified coils in the roadbed. This paper will present results of proof-of-principle tests, electromagnetic computer simulations, and systems analysis. It is concluded that this new linear induction motor can be implemented using existing technology and is a promising alternative propulsion method for very high speed rail transportation. © Copyright 1995 Society of Automotive Engineers, Inc.

More Details

Motion planning for multiple moving objects

Proceedings of the IEEE International Symposium on Assembly and Task Planning

Hwang, Yong K.

We present a motion planner for multiple moving objects in two dimensions. The search for collision-free paths is performed in the composite configuration space of all the moving objects to guarantee a solution, and the efficiency of our planner is demonstrated with examples. Our motion planner can be characterized with a hierarchical, multi-resolution search of the configuration space along with a generate-and-test paradigm for solution paths. Because of the high dimensionality of the composite configuration space, our planner is most useful for cases with a small number of moving objects. Some of the potential applications are navigation of several mobile robots, and planning part motions for a multi-handed assembly operation.

More Details

Mechanical propulsion from unsymmetrical magnetic induction fields

31st Joint Propulsion Conference and Exhibit

Tedeschi, William J.

A method is reported for generating mechanical spacecraft propulsion from unsymmetrical magnetic induction fields. It is based on an unsymmetrical three-dimensional loop antenna structure driven by a repetitively-pulsed high-current power supply. Antenna geometry is optimized for generating propulsive thrust rather than radiating electromagnetic energy. Part of this antenna consists of flat electrical conductors, which form a partially-closed quasi-cylindrical volume around a center conductor. Magnetic flux concentrates at the closed end of the quasi-cylindrical volume thereby creating a magnetic field flux density gradient along a single axis collinear to the Center Conductor. This magnetic field density gradient imbalances the magneto-mechanical forces that result from the interactions of the internal magnetic induction field with the current in the conductors of the antenna structure, in accordance with Lorentz’s Force Law. Also, there are electrically isolated prismatic conductor surfaces attached to the inside surface of the flat conductors which form the closed end of the quasi-cylindrical volume. Mechanical pressures occur on these conductor prisms because of the changing internal magnetic field and are a consequence of Faraday’s Induction Law and Lenz’s Law. Input current rise time and wave shape are crucial to maximizing spacecraft propulsive thrust.

More Details

Current status and future research in motion planning

Proceedings of the IEEE International Symposium on Assembly and Task Planning

Hwang, Yong K.

There have been numerous research efforts in the field of motion planning, resulting in many theoretical and practical results. We review the current status of existing motion planning algorithms, evaluate their completenesses and efficiencies on modern computers, and suggest fruitful future research directions.

More Details

An overview of semiconductor bridge, SCB, applications at Sandia national laboratories

31st Joint Propulsion Conference and Exhibit

Bickes Jr., R.W.; Grubelich, M.C.; Harris, S.M.; Merson, J.A.; Weinlein, J.H.

The semiconductor bridge, SCB, developed by Sandia National Laboratories is a maturing technology now being used in several applications by Sandia customers. Most applications arose because of a need at the system level to provide explosive assemblies that were light weight, small volume, low cost and required small quantities of electrical energy to function — for the purposes of this paper we define an explosive assembly to mean the combination of the firing set and an explosive component. As a result, and because conventional firing systems could not meet the stringent size, weight and energy requirements of our customers, we designed and are investigating SCB applications that range from devices for Sandia applications to igniters for fireworks. We present in this paper an overview of SCB technology with specific examples of the systems designed for our customers to meet modern requirements that sophisticated explosive systems must satisfy in today’s market environments.

More Details

Further Development of the Heavy ion Cross Section for Single Event Upset: Model (HICUP)

IEEE Transactions on Nuclear Science

Connell, Leonard W.

HICUP models the angular dependent heavy ion upset cross section. It pulls together many of the parameters and concepts used to characterize the Single Event Upset (SEU) phenomena, unifying them in a single cohesive model. HICUP is based on a Rectangular Parallelepiped (RPP) geometry for the sensitive volume and the Weibull density function for the upset threshold energy. Excellent agreement is obtained between the model and heavy ion test data. HICUP is used to derive the correct scaling laws for transforming angular cross section data to normal incidence, reconciling two previously proposed inverse cosine scaling corrections. The angle-integrated HICUP model, I-HICUP, is used in Galactic Cosmic Ray (GCR) upset rate calculations with results nearly identical to the Space Radiation• code. Letaw [12] has procuced an automated SEU parameter fitting routine based on HICUP and the cH2 method. It ferrets out the best-fit critical SEU parameters embedded within the raw angular test data, including charge collection depth and funnel length. His method couples directly to the upset rate calculation in a self-consistent manner eliminating the need to arbitrarily assume a device depth. Results of this new procedure are presented. © 1995 IEEE

More Details

Origin, diagnostics, and mitigation of a salt dissolution sinkhole at the US Strategic Petroleum Reserve storage site, Weeks Island, Louisiana

Land subsidence. Proc. international symposium, The Hague, 1995

Neal, J.T.

A sinkhole was observed over the edge of the two-level former salt mine that was converted for oil storage. Diagnostic studies suggest a direct connection exists between the surface collapse area and the underground mine as shown by correlative measurements of sediment slump rates and probable brine influx into the mine. The dissolution of salt below the sinkhole that initiated the leak into the mine was likely caused by several confluent geologic processes, and exacerbated by mining-induced stresses that created fractures which served as hydrologic flowpaths. Modelling studies of mine stresses show that years may be required before tensional cracking begins to occur, but once begun can continue to develop, and relieve the stress in that specific regime. The crack regime creates the avenue for incursion of groundwater. Mitigation measures include increasing the mine pressure, slowing the dissolution by injecting brine into the sinkhole throat, and construction of a freeze curtain to restrict hydrologic flowpaths. -from Authors

More Details

Command shaping for residual vibration free crane maneuvers

Proceedings of the American Control Conference

Parker, Gordon G.

A general method for applying command shaping to various multiple degree of freedom cranes is described such that the payload moves to a specified point without residual oscillation. A dynamic programming is used for general command shaping for optimal maneuvers. The results taken are compared to near-optimal solutions where the commands are linear combinations of accelerations pulse basis functions. Simulation results and experimental verification for a variable load-line length rotary crane are also presented using design procedures.

More Details

Methodology for computational fluid dynamics code verification/validation

1995 Fluid Dynamics Conference

Oberkampf, William L.

The issues of verification, calibration, and validation of computational fluid dynamics (CFD) codes has been receiving increasing levels of attention in the research literature and in engineering technology. Both CFD researchers and users of CFD codes are asking more critical and detailed questions concerning the accuracy, range of applicability, reliability and robustness of CFD codes and their predictions. This is a welcomed trend because it demonstrates that CFD is maturing from a research tool to the world of impacting engineering hardware and system design. In this environment, the broad issue of code quality assurance becomes paramount, However, the philosophy and methodology of building confidence in CFD code predictions has proven to be more difficult than many expected. A wide variety of physical modeling errors and discretization errors are discussed. Here, discretization errors refer to all errors caused by conversion of the original partial differential equations to algebraic equations, and their solution. Boundary conditions for both the partial differential equations and the discretized equations will be discussed. Contrasts are drawn between the assumptions and actual use numerical method consistency and stability. Commen are also made concerning the existence and uniqueness solutions for both the partial differential equations and the discrete equations. Various techniques are suggested for the detection and estimation of errors caused by physical modeling and discretization of the partial differential equations.

More Details

Characterization of carbon nitride films produced by pulsed laser deposition

Materials Research Society Symposium - Proceedings

Friedmann, Thomas A.

Carbon Nitride (CNx) films have been grown by ion-assisted pulsed-laser deposition (IAPLD). Graphite targets were laser ablated while bombarding the substrate with ions from a broad-beam Kaufman-type ion source. The ion voltage, current density, substrate temperature, and feed gas composition (N2 in Ar) have been varied. The resultant films were characterized by Raman, Fourier transform infrared (FTIR), and Rutherford back scattering (RBS) spectroscopy. Samples with ≈30% N/C ratio have been fabricated. The corresponding Raman and FTIR spectra indicate that nitrogen is incorporated into the samples by insertion into sp2- bonded structure. A low level of C≡N triple bonds is also found. As the ion current and voltage are increased with a pure Ar ion beam, Raman peaks associated with nanocrystalline graphite appear in the spectra. Adding low levels of nitrogen to the ion beam first reduces the Raman intensity in the vicinity of the graphite disorder peak without adding detectable amounts of nitrogen to the films (as measured by RBS). At higher nitrogen levels in the ion beam, significant amounts of nitrogen are incorporated into the samples, and the magnitude of the ″disorder″ peak increases. By increasing the temperature of the substrate during deposition, the broad peak due mainly to sp2-bonded C-N in the FTIR spectra is shifted to lower wavenumber. This could be interpreted as evidence of single-bonded C-N; however, it is more likely that the character of the sp2 bonding is changing.

More Details

Surface pressure measurements for CFD code validation in hypersonic flow

1995 Fluid Dynamics Conference

Oberkampf, William L.

Extensive surface pressure measurements were obtained on a hypersonic vehicle configuration at Mach 8. All of the experimental results were obtained in the Sandia National Laboratories Mach 8 hypersonic wind tunnel for lamipar boundary layer conditions. The basic vehicle configuration IS a spherically blunted 100 half-angle cone with a slice parallel with the axis of the vehicle. The bluntness ratio of the geometly IS 10% and the slice begins at 70% of the length of the vehicle. Surface pressure measurements were obtained for angles of attack from -10 to +180. for various roll angles, at 96 locations on the body surface. A new and innovative uncertainty analysis was devised to estimate the contributors to surface pressure meaSment uncenainty. Quantitative estimates were computed for the uncertainty contributions due to the complete insmmentation system, nonunifoxmity of flow in the test section of the wind Nnnel. and variations in the wind tunnel model. This extensive set of high-quality surface pressure measurements is recommended for use in the calibration and validation of computational fluid dynamics codes for hyuersonic flow conditions.

More Details

Dry etching of 3-5 nitrides

Shul, Randy J.

The chemical inertness and high bond strengths of the 3-5 nitrides lead to slower plasma etching rates than for more conventional 3-5 semiconductors under the same conditions. High ion density conditions (greater than 3 x 10(exp 11) cm(exp {minus}3)) such as those obtained in ECR or magnetron reactors produce etch rates up to an order of magnitude higher than for RIE, where the ion densities are in the 10(exp 9) cm(exp {minus}3) range. The authors have developed smooth anisotropic dry etches for GaN, InN, AlN and their alloys based on Cl2/CH4/H2/Ar, BCl3/Ar, Cl2/H2, Cl2/SF6, HBr/H2 and HI/H2 plasma chemistries achieving etch rates up to approx. 4,000 A/min at moderate dc bias voltages (less than or equal to {minus}150 V). Ion-induced damage in the nitrides appears to be less apparent than in other 3-5`s. One of the key remaining issues is the achievement of high selectivities for removal of one layer from another.

More Details

Fabrication of novel 3-N and 3-V modulator structures by ECR plasma etching

Shul, Randy J.

Quantum well microdisk laser structures have been fabricated in the GaN/InGaN, GaAs/AlGaAs and GaAs/InGaP systems using a combination of ECR dry etching Cl2/CH4/H2/Ar, BCl3/Ar or CH4/H2/Ar plasma chemistries respectively, and subsequent wet chemical etching of a buffer layer underlying the quantum wells. While wet etchants such as HF/H2O and HCl/HNO3/H2O are employed for AlGaAs and InGaP, respectively, a new KOH based solution has been developed for AlN which is completely selective over both GaN and InGaN. Typical mask materials include PR or SiN(x), while the high surface recombination velocity of exposed AlGaAs (approximately) 10(exp 5)cm(center dot)/sec requires encapsulation with ECR-CVD SiN(x) to stabilize the optical properties of the modulators.

More Details

Today`s Solar Power Towers

Alpert, Daniel J.

This [updated 1/95] report outlines the technology of modern solar central receiver power plants, showing how they could be an important domestic source of energy within the next decade

More Details

Performance of an Induction Coil Launcher

IEEE Transactions on Magnetics

Shokair, Isaac R.

Performance of an electromagnetic induction launcher is considered for three types of armatures. These are: solid, 1-element wound and 16-element wound aluminum armatures. The one element wound armature has uniform current density throughout and thus can withstand field reversal (working against embedded armature flux) and still maintain low temperature. Slingshot simulations were performed for several configurations. Best performance was obtained for a single element wound armature with two field reversals. For a 60 kg projectile, 10.5 cm coil inner radius and 5.5 cm coil build, the velocity after 50 meters of launcher length (670 stages) exceeded 3.5 km/sec with an overall efficiency of about 45%. For the same parameters the solid and 16-element wound armatures reach a velocity of about 3.3 km/sec after 800 stages (60 meters of launcher length) but without field reversal. A velocity of 3.5 km/sec is possible after 60 meters of launcher length with the 16-element wound armature with one field reversal, but the temperature is close to the melting temperature of aluminum. In all simulations with a solid armature, melting of some of the surface material occurs. However, it is shown that most of the melting occurs after contribution has been made to the forward going pressure, that is, melting does not affect the electrical performance of the launcher. The effect of coil firing time jitter on launcher performance is also considered and is found to be very small for realistic perturbations. For ± 2 μ–secs random jitter, the reduction in the final velocity for a 60 meter launcher with a solid armature is less than 0.1% and the increase in temperature is only 2%. This holds for all types of armatures. © 1995 IEEE

More Details

Microporous polyimide films for reduced dielectric applications

Saunders, R.S.

With all the advances in the microelectronics industry, a limiting factor to computer chip speed and size is becoming the dielectric constant of the interlayer insulating materials. Dielectric constants of these layers have been reduced in going from inorganic to organic type materials. A further reduction in dielectric constant, coupled with better mechanical properties are still required for these types of materials. The authors have developed a technique involving spincoating in conjunction with a thermodynamic process called {open_quotes}Non-solvent Induced Phase Separation{close_quotes} (NSIPS) to create microporous polyimide films that exhibit both a lower dielectric constant and better stress reduction properties compared to their solid film counterparts. In this technique, the authors spincoat a soluble polyimide solution in 1,3-dimethoxybenzene solvent onto a silicon wafer, and then immediately submerse the {open_quotes}wet{close_quotes} polymer film into a non-solvent bath, typically toluene. Phase separation of the polymer occurs on a micron size scale and the resulting microporous structure becomes locked in by the high glass transition temperature of the polyimide. The authors have determined the factors affecting the film morphology, thickness, pore size, and percent porosity; these factors include the polymer concentration, spin speed, and the type of non-solvent used. The different morphologies obtained for the varying non-solvents are explained in terms of thermodynamics and kinetics of phase separation and diffusion, using an idealized ternary phase diagram. One particular film having a porosity of 68%, thickness of 22 microns and pore size of 1.4 microns had a measured dielectric constant of 1.88 and dielectric loss of 0.002. Stress measurements indicated that the microporous film reduced surface stress on the wafer by more than a factor of 10 when compared to the analogous solid polyimide film.

More Details
Results 93526–93550 of 96,771
Results 93526–93550 of 96,771