A high-velocity impact testing technique, utilizing a tethered rocket, is being developed at Sandia National Laboratories. The technique involves tethering a rocket assembly to a pivot location and flying it in a semicircular trajectory to deliver the rocket and payload to an impact target location. Integral to developing this testing technique is the parallel development of accurate simulation models. An operational computer code, called ROAR (Rocket-on-a-Rope), has been developed to simulate the three-dimensional transient dynamic behavior of the tether and motor/payload assembly. This report presents a discussion of the parameters modeled, the governing set of equations, the through-time integration scheme, and the input required to set up a model. Also included is a sample problem and a comparison with experimental results.
The Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups typically hold a joint meeting each year to provide a forum for discussion of technical issues of current interest as well as an opportunity for program reviews by the Department of Energy (DOE). At the meeting in September 1990, reported here, research programs in support of the International Thermonuclear Experimental Reactor (ITER) were highlighted. The first part of the meeting was devoted to research and development (R&D) for ITER on plasma facing components plus introductory presentations on some current projects and design studies. The balance of the meeting was devoted to program reviews, which included presentations by most of the participants in the Small Business Innovative Research (SBIR) Programs with activities related to plasma wall interactions. The Task Groups on Plasma/Wall Interaction and on High Heat Flux Materials and Components were chartered as continuing working groups by the Division of Development and Technology in DOE`s Magnetic Fusion Program. This report is an addition to the series of ``blue cover`` reports on the Joint Meetings of the Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups. Among several preceding meetings were those in October 1989 and January 1988.
The switch delay time of the MC3858 sprytron was measured using a test matrix consisting of 36 different trigger circuit configurations. The test matrix allowed the measurement of switch delay times for peak trigger voltages ranging from 47 V to 1340 V and for stored trigger energies ranging from 0.023 mJ to 2.7 mJ. The average switch delay time was independent of peak trigger voltage above approximately 800 V. Similarly, the average switch delay was independent of trigger stored energy above approximately 0.5 mJ. Below these saturation values, the average switch delay increases rapidly with decreasing trigger voltage or esergy. In contrast to the average switch delay time, the shot-to-shot variability in switch delay time does not appear to be strongly affected by peak trigger voltage as long as the trigger voltage is groater than 100 V. Below 100 V, the variability in switch delay time rises rapidly due to failure of the trigger to undergo immediate high voltage breakdown when trigger voltage is applied. The effect of an abnormally-high-resistance trigger probe on switch delay time was also investigated. It was found that a high-resistance probe behaved as a second overvoltage gap in the trigger circuit. Operation with a peak trigger voltage greater than the breakdown voltage of this second gap yielded delay times comparable to operation with a normal trigger. Operation with a peak trigger voltage less than the breakdown voltage of this second gap increased the switch delay time by an amount comparable to the time required to ramp the trigger circuit output up to the breakdown voltage of the second gap. Finally, the effect that varying the bias voltage applied to the sprytron has on switch delay time was measured. The switch delay time did not appear to depend on bias voltage for bias voltages between 725 V and 2420 V.
Performance assessment modeling for High Level Waste (HLW) disposal incorporates three different types of uncertainty. These include data and parameter uncertainty, modeling uncertainty (which includes conceptual, mathematical, and numerical), and uncertainty associated with predicting the future state of the system. In this study, the potential impact of conceptual model uncertainty on the estimated performance of a hypothetical high-level radioactive waste disposal site in unsaturated, fractured tuff has been assessed for a given group of conceptual models. This was accomplished by taking a series of six, one-dimensional conceptual models, which differed only by the fundamental assumptions used to develop them, and conducting ground-water flow and radionuclide transport simulations. Complementary cumulative distribution functions (CCDFs) representing integrated radionuclide release to the water table indicate that differences in the basic assumptions used to develop conceptual models can have a significant impact on the estimated performance of the site. Because each of the conceptual models employed the same mathematical and numerical models, contained the same data and parameter values and ranges, and did not consider the possible future states of the system, changes in the CCDF could be attributed primarily to differences in conceptual modeling assumptions. Studies such as this one could help prioritize site characterization activities by identifying critical and uncertain assumptions used in model development, thereby providing guidance as to where reduction of uncertainty is most important.
The tectonics program for the proposed high-level nuclear waste repository at Yucca Mountain in southwestern Nevada must evaluate the potential for surface faulting beneath the prospective surface facilities. To help meet this goal, Quaternary surficial mapping studies and photolineament analyses were conducted to provide data for evaluating the location, recency, and style of faulting with Midway Valley at the eastern base of Yucca Mountain, the preferred location of these surface facilities. This interim report presents the preliminary results of this work.
The scanning electron microscope (SEM) has become as standard a tool for IC failure analysis as the optical microscope, with improvements in existing SEM techniques and new techniques being reported regularly. This tutorial has been designed to benefit both novice and experienced failure analysts by reviewing several standard as well as new SEM techniques used for failure analysis. Advanced electron-beam test systems will be covered briefly; however all techniques discussed may be performed on any standard SEM. Topics to be covered are (1) standard techniques: secondary electron imaging for surface topology, voltage contrast, capacitive coupling voltage contrast, backscattered electron imaging, electron beam induced current imaging, and x-ray microanalysis and (2) new SEM techniques: novel voltage contrast applications, resistive contrast imaging, biased resistive contrast imaging, and charge-induced voltage alteration. Each technique will be described in terms of the information yielded, the physics behind technique use, any special equipment and/or instrumentation required to implement the technique, the expertise required to implement the technique, possible damage to the IC as a result of using the technique, and examples of using the technique for failure analysis.
Sandia is a government-owned, contractor-operated national laboratory that AT&T has operated on a no-profit, no-fee basis since 1949. We have been an integral part of the nuclear weapons program, providing total concept-to-retirement engineering for every warhead and bomb in the nuclear weapon stockpile. We are proud of our contributions to national security. Our scientific and engineering skills, our facilities, and our experience have benefited not only the nuclear weapons program but have also contributed significantly to their areas of national security, including conventional defense, energy, and industrial competitiveness. Likewise, these capabilities position us well to continue a tradition of exceptional service in the national service in the national interest. Sandia is a multiprogram national laboratory with mission responsibilities in nuclear weapons, arms control and verification, energy and environment, and technology transfer. Our work for the DOE Assistant Secretary for Defense Programs constitutes 50% of the laboratory`s effort. Sandia`s arms control, verification, and related intelligence and security programs, funded by DOE and by other agencies constitute the largest aggregation of such work at any facility in the world. We also support DOE with technology development -- in particular, specialized robotics and waste characterization and treatment processes to assist in the cleanup of contaminated sites. Research and development to support the National Energy Strategy is another substantial laboratory activity. Sandia`s successful developments in renewable, nuclear, and fossil energy technologies have saved the country billions of dollars in energy supply and utilization. Technology transfer is conducted across all Sandia programs.
A series of cyclic, direct-shear tests was conducted on several replicas of a tensile fracture of welded tuff to verify the graphical method proposed by Saeb (1989) and by Amedei and Saeb (1990). Tests were performed under different levels of constant normal load and constant normal stiffness. Each test consisted of five cycles of forward and reverse shear. The effect of cyclic loading on the fracture shear behavior was investigated. Fracture surface asperity degradation was quantified by comparing fracture fractal dimensions before and after shear.
The purpose of this talk is to set the scene with a definition of records management, records and federal records. It is also to introduce some techniques to ensure that office files are properly organized and maintained, rapidly retrievable, complete, and ready for appropriate disposition the NARA (National Archives and Records Administration) way.
A designed and assembled method for a non-adjustable Interferometer cavity has been developed at Sandia National Laboratories which has enabled the development of a Fixed-Cavity Velocity Interferometer System for Any Reflector (VISAR). In this system, the critical interference adjustments are performed during assembly of the interferometer cavity, freeing the user from an otherwise repetitive task. The Fixed-Cavity VISAR System is constructed in modular form. Compared to previous VISAR systems, it is easy to use, and gives high quality results. 6 refs.
The high-temperature stability of current and proposed aviation fuels is a major factor in the design of advanced technology aircraft engines. Efforts to develop highly stable formulations and thereby mitigate fouling problems in aircraft fuel system components would clearly benefit from a predictive model that describes the important parameters in thermally induced degradation of the liquid fuel as well as the deposition of solid species. To generate such a model, diagnostic tools are needed to characterize adequately fluid dynamics, heat transfer, mass transfer and complex chemical processes that occur in thermally stressed fuels. In this paper, the authors describe preliminary results in the use of a dynamic light scattering technique, photon correlation spectroscopy (PCS), to address one aspect of the fuel stability problem; i.e., incipient particle formation and subsequent growth in mean particle size as a function of tempreture, exposure time, degree of oxidation, etc.
The highest {Tc}`s achieved in organic electron-donor-based systems occur in two isostructural ET salts, viz., {kappa}-[(ET){sub 2}Cu][N(CN){sub 2}]X, X = Br ({Tc} = 11.6 K, ambient pressure), X = Cl ({Tc} = 12.8 K, 0.3 kbar) whereas for the electron-acceptor-based systems derived from C{sub 60} they occur in K{sub 3}C{sub 60} ({Tc} = 19 K), Rb{sub 3}C{sub 60} ({Tc} = 29 K), Rb{sub x}Cs{sub y}C{sub 60} ({Tc} 33 K) and Rb{sub x}Tl{sub y}C{sub 60} ({Tc} {approx} 45 K). Research performed at Argonne National Laboratory, and based on the ET and C{sub 60} systems, is reviewed.
The photocurrent response, photo-induced changes in hysteresis behavior, and electrooptic (birefringence) effects of sol-gel derived PZT film have been characterized as part of an effort to evaluate ferroelectric films for image storage and processing applications.
The effects of argon addition to the vacuum arc remelting (VAR) process were studied in both laboratory and industrial experiments while remelting Alloy 718. The results demonstrate that argon can be added to an industrial VAR furnace to relatively high partial pressures without decreasing the melt rate, drip-short frequency, or constricting the arc plasma to a local region of the electrode surface. Laboratory experiments illustrate that this result is dependent on electrode chemistry, possibly related to magnesium content.
Melt pool shape in VAR is controlled by fluid flow, which is governed by the balance between two opposing flow fields. At low melt currents, flow is dominated by thermal buoyancy. In these instances, metal is swept radially outward on the pool surface, resulting in relatively shallow melt pools but increased heat transfer to the crucible at the melt pool surface. At high melt currents, flow is primarily driven by magento-hydrodynamic forces. In these cases, the surface flow is radially inward and downward, resulting in a constricted arc, the pool depth and relative heat transfer to the crucible are intermediate, even though the melt rate is significantly lower than either diffuse arc condition. Constricted arc conditions also result in erratic heat transfer behavior and non-uniformities in pool shape.
This report contains a summary of large-scale experiments conducted at Sandia National Laboratories under the Solar Detoxification of Water project. The objectives of the work performed were to determine the potential of using solar radiation to destroy organic contaminants in water by photocatalysis and to develop the process and improve its performance. For these experiments, we used parabolic troughs to focus sunlight onto glass pipes mounted at the trough's focus. Water spiked with a contaminant and containing suspended titanium dioxide catalyst was pumped through the illuminated glass pipe, activating the catalyst with the ultraviolet portion of the solar spectrum. The activated catalyst creates oxidizers that attack and destroy the organics. Included in this report are a summary and discussion of the implications of experiments conducted to determine: the effect of process kinetics on the destruction of chlorinated solvents (such trichloroethylene, perchloroethylene, trichloroethane, methylene chloride, chloroform and carbon tetrachloride), the enhancement due to added hydrogen peroxide, the optimal catalyst loading, the effect of light intensity, the inhibition due to bicarbonates, and catalyst issues.
Accident severity categories are used in many risk analyses for the classification and treatment of accidents involving vehicles transporting radioactive materials. Any number or definition of severity categories may be used in an analysis. A methodology which allow accident probabilities associated with one severity category scheme to be transferred to another severity category scheme is described. The supporting data and information necessary to apply the methodology are also discussed. The ability to transfer accident probabilities between severity category schemes will allow some comparisons of different studies at the category level. The methodology can be employed to transfer any quantity between category schemes if the appropriate supporting information is available.
This paper will describe two data bases which provide supporting information on radioactive material transport experience in the United States. The Radioactive Material Incident Report (RMIR) documents accident/incident experience from 1971 to the present from data acquired from the US Department of Transportation (DOT) and the Nuclear Regulatory Commission (NRC). The Radioactive Material Postnotification (RAMPOST) data base documents the shipments that have taken place for Highway Route Controlled Quantities (HRCQ) of radioactive material. HRCQ shipments are post notified (that is, after the shipment) to the DOT.
A brief discussion of the following topics is given in this report: Liquid Metal Divertors; Lithium Droplet Beam Divertor; Preferential Pumping of Helium; Reduced Erosion with Cu-Li, W-Li, etc.; Reduction of Erosion by Thermionic Emission; Reduced Erosion in Boronized Graphites; Proposal for Materials Experiments in TRIAM; Carbon-SiC for Plasma Facing Components; Helium Pumping with Palladium; Large Area Pump Limiter; Techniques for Enhanced Heat Removal; New Outlook on Gaseous Divertors; Gaseous Divertor Simulations; Impurity Seeding to Control ITER Particle and Heat Loads; Gaseous Divertor Experiments; Electrical Biasing to Control SOL Particle Fluxes; Biased Limiter in TEXTOR and Biased Divertor in PBX-M; Particle and Heat Flux Control Using Ponderomotive Forces; Helium Exhaust Using ICRF; Ergodic Magnetic Limiter Experiments in JFT-2M; and Helium Exhaust Using Fishbones.
This report describes the Training and Qualification Program at the Simulation Technology Laboratory (STL). The main facility at STL is Hermes III, a twenty megavolt accelerator which is used to test military hardware for vulnerability to gamma-rays. The facility is operated and maintained by a staff of twenty engineers and technicians. This program is designed to ensure that these personnel are adequately trained and qualified to perform their jobs in a safe and efficient manner. Copies of actual documents used in the program are included in appendices. This program meets all the requirements for training and qualification in the DOE Orders on Conduct of Operations and Quality Assurance, and may be useful to other organizations desiring to come into compliance with these orders.
Division 2473 has characterized the performance of three types of focusing lenses used for CO{sub 2} laser beam welding. Specifically, we evaluated the plano-convex, positive meniscus, and aspheric lenses with focal lengths ranging from 1.25 to 5.0 inches. The measured responses were the resultant weld depth and width of bead-on-plate welds made using a range of focus positions. The welding parameters were 185 to 700 watts continuous wave beam power and 30 inches per minute travel speed. The results of this study quantified the weld profile dimensions as a function of lens type and focal length, beam power, depth of focus, and verified the coincidence of maximum weld depth and width.
The WC-1 and WC-3 experiments were conducted using a dry, 1:10 linear scale model of the Zion reactor cavity to obtain baseline data for comparison to future experiments that will have water in the cavity. WC-1 and WC-3 were performed with similar initial conditions except for the exit hole between the melt generator and the scaled model of the reactor cavity. For both experiments the molten core debris was simulated by a thermitically generated melt formed from 50 kg of iron oxide/aluminum/chromium powders. After the thermite was ignited in WC-1, the melt was forcibly ejected by 374 moles of slightly superheated steam at an initial driving pressure of 4.6 MPa through an exit hole with an actual diameter of 4.14 cm into the scaled model of the reactor cavity. In WC-3, the molten thermite was ejected by 300 moles of slightly superheated steam at an initial driving pressure of 3.8 MPa through an exit hole with an actual diameter of 10.1 cm into the scaled model of the reactor cavity. Because of the larger exit hole diameter, WC-3 had a shorter blowdown time than WC-1, 0.8`s compared to 3.0`s. WC-3 also had a higher debris velocity than WC-1, 54 m/s compared to 17.5 m/s. Posttest sieve analysis of debris recovered from the Surtsey vessel gave identical results in WC-1 and WC-3 for the sieve mass median particle diameter, i.e. 1.45 mm. The total mass ejected into the Surtsey vessel in WC-3 was 45.0 kg compared to 47.9 kg in WC-1. The peak pressure increase in Surtsey due to the high-pressure melt ejection (HPME) was 0.275 MPa in WC-3 and 0.272 in WC-1. Steam/metal reactions produced 181 moles of of hydrogen in WC-3 and 145 moles of hydrogen in WC-1.
Transport models used for performance assessment of the Waste Isolation Pilot Plant (WIPP) in the event of human intrusion into the repository currently rely on the K{sub d} linear sorption isotherm model to predict rates of radionuclide migration. The vast majority of K{sub d} data was measured in static (batch) experiment on powdered substrate; most data specific to the Culebra dolomite were gathered in this way for five radioelements of concern using up to four different water compositions. This report summarizes the available data, examines inconsistencies between these data and the assumptions of the K{sub d} model, and discusses potential difficulties in using existing sorption data for predictive modeling of radionuclide retardation through adsorption modeling are presented as an alternative to the K{sub d} model.
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a machine-portable utility that emulates the basic features of the CDC UPDATE processor, the user selects on of eight codes for running on a machine of one of at least four major vendors. The ease with which this utility is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is maximized by employing the best available cross sections and sampling distributions, and the most complete physical model for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. Feasibility of construction permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications through simple update procedures. Version 3.0, the latest version of ITS, contains major improvements to the physical model, additional variance reduction via both internal restructuring and new user options, and expanded input/output capabilities.
A new algorithm for the treatment of sliding interfaces between solids with or without friction in an Eulerian wavecode is described. The algorithm has been implemented in the two-dimensional version of the CTH code. The code was used to simulate penetration and perforation of aluminum plates by rigid, conical-nosed tungsten projectiles. Comparison with experimental data is provided.