Publications

Results 97451–97475 of 99,299

Search results

Jump to search filters

Automated dry powder dispenser for explosive components

Garcia, P.; Salmonson, J.C.

Sandia and Mound are developing a workcell that will automate the assembly of explosive components. Sandia is responsible for the automated powder dispenser subsystem. Automated dispensing of explosive powders in the past resulted in separation or segregation of powder constituents. The Automated Dry Powder Dispenser designed by Sandia achieves weight tolerances of {plus_minus}0.1 mg while keeping powderoxidizer separation to a minimum. A software control algorithm compensates fore changes in powder flow due to lot variations, temperature, humidity, and the amount of powder left in the system.

More Details

Prompt critical control of the ACRR using a linear quadratic regulator design

Gilkey, Jeffrey C.

This paper describes the application of linear control design techniques to the problem of nuclear reactor control. The control algorithm consists of generating a nominal trajectory within the control authority of the reactor rod drives, and then following this trajectory with a gain scheduled linear quadratic regulator (LQR). A controller based on this algorithm has generated power pulses up to 100 MW on Sandia`s Annular Core Research Reactor (ACRR). Prompt critical control at $1.02 net reactivity and controlled start up rates over 350 DPM have also been demonstrated using tills controller.

More Details

Energy distribution of trapped holes in irradiated SiO{sub 2}

Fleetwood, Daniel M.

There is a discrepancy between literature estimates of trapped-hole energies in irradiated SiO{sub 2} obtained via thermal and optical methods (0.6-1.4 eV and 3 eV, respectively). A method has been developed for obtaining an improved estimate of the energy distribution of trapped holes in irradiated SiO{sub 2}, which brings thermal and optical estimates into much closer agreement. Experimental and theoretical TSC (thermally stimulated current) spectra are shown for a soft MOS capacitor with a 350-nm oxide cycled through 4 irradiations (10 keV x rays) and TSC measurements. Four trap-energy distributions were also independently derived from TSC at different ramp rates for a 45-nm radiation-hardened oxide. The trap distributions inferred from TSC for the 45-nm hard oxide agree with each other and with that inferred for the soft 350-nm oxide. 2 figs, 8 refs. (DLC)

More Details

Fine-particle iron catalysts: Testing program at Sandia National Laboratories

Stohl, F.V.

The use of fine-particle size (<40 nm) unsupported catalysts in the solubilization step of direct coal liquefaction may result in improved economics for direct coal liquefaction due to the possible enhanced yields of desired products, the potential for decreasing reaction severity, and the possibility of using less supported catalyst during liquefaction processing. To guide the research and development efforts for these new unsupported catalysts, it is necessary to evaluate the catalyst performance under standard test conditions so that the impacts of catalyst formulations from different laboratories can be compared. The objectives of this work are to develop standard coal liquefaction test procedures and to perform the testing of the novel fine-particle size liquefaction catalysts being developed in the DOE/PETC AR Coal Liquefaction program. As part of this effort, we have developed a factorial experimental design to enable evaluation of the catalysts over ranges of temperature, time, and catalyst loading. The standard test procedure uses DECS-17 Blind Canyon Coal and 9,10-dihydrophenanthrene (DHP) as the hydrogen donor. Product analyses include tetrahydrofuran (THF) conversion, heptane conversion, DHP recovery, and gas analyses. THF and heptane insoluble materials are analyzed for carbon, hydrogen, nitrogen and sulfur contents. Testing is performed in batch microautoclave reactors. The experimental design and test procedures are being evaluated using {minus}100 mesh pyrite as a catalyst.

More Details

Monolithic, series connected GaAs photovoltaic power converters for optoelectronic component applications

Rose, B.H.

This report describes the features of monolithic, series connected photovoltaic converters which have been developed for applications where voltages are required that are higher than available using conventional single junction solar cells. These devices are intended to play a significant role in advanced weapon systems development. They are also appropriate for any other applications where electric power is needed in remote regions and electrical connection to the region is deemed detrimental for whatever reasons. Development of this technology at two outside contractors has been accomplished through competitive procurement in response to an internally generated Statement of Work. Detailed comparisons are made of data taken from converters of each type from both contractors. The primary advantage of these converters is that they are high voltage/low current devices compared to conventional single junction solar cells. This allows them to directly drive a wider range of loads without the necessity of power conditioning, such as provided by a transformer. Discussions of load analysis for given applications are included.

More Details

Software security for a network storage service

Haynes, R.A.

In 1991, Sandia National Laboratories acquired a Network Storage Service (NSS) as a result of a fully competitive procurement. The Network Storage Service, which provides access to over a terabyte of data storage in a two-tiered hierarchy, had minimal software security features. Before the NSS could be placed into production, it had to be accredited by the Department of Energy, Sandia`s accrediting authority. Sandia was faced with implementing security features to allow the NSS to be operated in its secure computing network, which is a single security clearance, multiple data security level environment. This paper describes the software security design alternatives that were considered and what was ultimately implemented.

More Details

Effect of oxide thickness on interface-trap buildup rates

Shaneyfelt, Marty R.

The time dependence of radiation-induced interface-trap charge buildup for MOS transistors of varying gate-oxide thickness was investigated in order to clarify how the location of hydrogen in the SiO{sub 2} contributes to N{sub it} buildup. Radiation-induced interface-trap buildup in wet and dry gate oxides is compared for irradiations and anneals at constant positive bias and for negative-bias irradiations followed by positive-bias anneals. Implications of these results for different models of interface-trap buildup are discussed. 2 figs, 9 refs. (DLC)

More Details

Simulation of liquid drop breakup behavior in a flow field using discrete element techniques

Harper, Frederick T.

In this study, a discrete element technique was used to simulate drop breakup in two dimensions. A series of simulations in which the drop breakup occurred in the presence of a flow field was performed. The density ratio of the flow field to the drop in the simulations was comparable to many of the isothermal liquid/liquid drop breakup experiments performed to investigate hydrodynamic breakup during Fuel Coolant Interactions (FCIs). The randomly directed internal kinetic energy of the drop increased rapidly at the beginning of the interaction between the drop and the flow field due to momentum transfer from the flow field to the drop. After the initial increase in internal energy of the drop, the momentum transferred from the flow field to the drop in the form of translational kinetic energy of the center of mass of the drop. It was also observed that the drops simulated in the presence of a flow field required higher internal kinetic energies to fragment than did the drops observed in the simulations performed in the absence of a flow field.

More Details

High speed imaging for flash radiography using PIN diodes

Selph, M.M.

A high speed readout imaging system utilizing a commercial flash X-ray machine and miniature X-ray detectors has been developed. This system was designed to operate in the environment near a nuclear detonation where film or camera imaging cannot be used. The temporal resolution of the system is set by the 20 nanosecond FWHM of the X-ray pulse. The spatial resolution of the system was determined by the size and close packing of the PIN diodes used as the X-ray detectors. In the array used here, the PIN diodes have an active area of 2mm in diameter and were placed 3.8mm center to center. Computer-generated images using algorithms developed for this system are presented and compared with an image captured on film in the laboratory.

More Details

Application of the square root diffusivity analysis to measuring the diffusivity of multicomponent alloys

Romig Jr., Alton D.

The well known ``Boltzmann-Matano analysis`` can be used in general to measure the diffusivity of binary and ternary alloys. However for alloys containing four or more components, the analysis requires making assumptions, for example that the diffusivity is constant. Conversely, it can be shown that the ``square root diffusivity analysis`` applies to measuring diffusivities that vary with concentration, as long as the variation is linear with concentration. Methods of designing samples and evaluating data for the square root diffusivity analysis are discussed.

More Details

Eddy current power dissipation at sharp corners

Warne, Larry K.

This paper develops corrections to the impedance per unit length when the conductor cross section includes sharp corners. The case of a right internal angle is treated in detail. Corrections are given for all values of the ratio of internal to external magnetic permeabilities. Both the real and imaginary parts of the corrections are determined. Application of the results to a conductor of square cross section is given. Higher order terms are developed and compared to a numerical solution.

More Details

Summary on comparison of radiative heat transfer solutions for a specified problem

Skocypec, Russell D.

To assess the current capability for solving non-gray, anisotropically scattering multidimensional radiation problems, a specific problem was formulated for several participating authors to solve. They each applied their own methods to solve the problem, which was relevant to the modeling of heat transfer in coal-fired furnaces. This paper is a summary of the comparison of the results. Areas where future modeling efforts should address are identified.

More Details

Bonding in simple phosphate glass

Brow, R.K.

The bonding configurations for simple phosphate glasses are quantitatively described by both the relative concentrations of different polyhedral phosphate sites (i.e., the Q{sup n} description) determined by {sup 31}p magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and by the relative concentrations of bridging and nonbridging oxygen as measured by x-ray photoelectron spectroscopy (XPS). Both spectroscopies illustrate the depolymerizing effects of modifier additions in two series of Na{sub 2}O and ZnO-P{sub 2}0{sub 5} glasses.

More Details

RATLER: Robotic All-Terrain Lunar Exploration Rover

Purvis, James W.

A robotic rover vehicle designed for use in the exploration of the Lunar surface is described. The Robotic All-Terrain Lunar Exploration Rover (R.A.T.L.E.R.) is a four wheeled all-wheel-drive dual-body vehicle. A uniquely simple method of chassis articulation is employed which allows all four wheels to remain in contact with the ground, even while climbing over step-like obstacles as large as 1.3 wheel diameters. Skid steering and modular construction are used to produce a simple, rugged, highly agile mobility chassis with a reduction in the number of parts required when compared to current designs being considered for planetary exploration missions. The design configuration, mobility parameters, and performance of several existing R.A.T.L.E.R. prototypes are discussed.

More Details

Heat-affected zone cracking of nitronic 60 stainless steel

Mcguire, Michael T.

Nitronic 60 is a nitrogen-strengthened austenitic stainless steel used for applications where metal-to-metal wear and galling resistance are required. In addition, it does not transfer to martensite with strain or upon cooling to cryogenic temperatures. In comparison to type 304 stainless steel, the nickel content is similar, chromium content is slightly reduced and manganese, silicon, and nitrogen are all increased in Nitronic 60. Although studies have shown that it can be joined with arc welding, it fabrication weldability is limited by heat-affected zone (HAZ) cracking. This study examined the HAZ cracking behavior of this alloy during autogenous gas tungsten arc welding and pulsed autogenous Nd:YAG welding.

More Details

SE3158 development report

Siddiqui, M.A.

This report describes the SE3158 design and development tester that was designed by Digital Subsystem III Division 2314 at Sandia to support the development of the MC4073 SRAM II Programmer. The primary purpose of the SE3158 is to test the MC4073 SRAM II Programmer during its development phase.

More Details

Nonideal thermoequilibrium calculations using a large product species data base

Shock Waves

Hobbs, Michael L.

Thermochemical data fits for approximately 900 gaseous and 600 condensed species found in the JANAF tables (Chase et al. 1985) have been completed for use with the TIGER non-ideal thermoequilibrium code (Cowperthwaite and Zwisler 1973). The TIGER code has been modified to allow systems containing up to 400 gaseous and 100 condensed constituents composed of up to 50 elements. Gaseous covolumes have been estimated following the procedure outlined by Mader (1979) using estimates of van der Waals radii for 48 elements and three-dimensional molecular mechanics. Molecular structures for all gaseous components were explicitly defined in terms of atomic coordinates in Å (Hobbs and Baer 1992a). The Becker-Kistiakowsky-Wilson equation of state (BKW-EOS) has been calibrated near C-J states using detonation temperatures measured in liquid and solid explosives and a large product species data base. Detonation temperatures for liquid and solid explosives were predicted adequately with a single set of BKW parameters. Values for the empirical BKW constants α, β, κ, and θ were 0.5, 0.174, 11.85, and 5160, respectively. Values for the covolume factors, κi, were assumed to be invariant. The liquid explosives included mixtures of hydrazine nitrate with hydrazine, hydrazine hydrate, and water; mixtures of tetranitromethane with nitromethane; liquid isomers ethylnitrate and 2-nitroethanol; and nitroglycerine. The solid explosives included HMX, RDX, PETN, Tetryl, and TNT. Color contour plots of HMX equilibrium products as well as thermodynamic variables are shown in pressure and temperature space. Similar plots for a pyrotechnic reaction composed of TiH2 and KClO4 are also reported. Calculations for a typical HMX-based propellant are also discussed. © 1992 Springer-Verlag.

More Details

A Sandia weapon review bulletin : defense programs, Autumn 1992

Topics in this issue: (1) Focal Point and STEP. Sandia National Laboratories has always focused its advanced weapon development not only on future weapon needs, but also on the engineering and manufacturing sciences needed to meet them. Both areas are changing dramatically. As the nation dismantles many of its warheads, it becomes essential that those that remain are increasingly reliable, secure, capable, and safe. And as development resources diminish, it becomes vital that they are applied to the most critical technologies in a disciplined manner. The mission of the Focal Point program and the Stockpile Transition Enabling Program (STEP) is to develop processes for meeting these challenges. Focal Point offers a decision-making process for allocating Sandia's resources to meets its defense programs strategic goals. (2) Defense Programs news in brief. (3) Dismantling the nuclear stockpile. (4) W88/MK5: Arming, Fuzing, and Firing system meets all requirements and goals. (5) The Common Radar Fuze. (6) Insertable-explosive arming of firing sets. (7) Preparing for fewer underground tests.

More Details

Natural fracture systems studies

Warpinski, Norman R.

The objectives of this program are (1) to develop a basinal-analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteristics of natural fracture systems for use in completion, stimulation, and production operations. Natural-fracture basinal analysis begins with studies of fractures in outcrop, core and logs in order to determine the type of fracturing and the relationship of the fractures to the lithologic environment. Of particular interest are the regional fracture systems that are pervasive in western US tight sand basins. A Methodology for applying this analysis is being developed, with the goal of providing a structure for rationally characterizing natural fracture systems basin-wide. Such basin-wide characterizations can then be expanded and supplemented locally, at sites where production may be favorable. Initial application of this analysis is to the Piceance basin where there is a wealth of data from the Multiwell Experiment (MWX), DOE cooperative wells, and other basin studies conducted by Sandia, CER Corporation, and the USGS (Lorenz and Finley, 1989, Lorenz et aI., 1989, and Spencer and Keighin, 1984). Such a basinal approach has been capable of explaining the fracture characteristics found throughout the southern part of the Piceance basin and along the Grand Hogback.

More Details

SMART: A modular architecture for robotics and teleoperation

Anderson, Richard E.

This paper introduces SMART: Sandia National Laboratory`s Modular Architecture for Robotics and Teleoperation. SMART is designed to integrate the different slave devices (e.g., large hydraulic arms, mobile manipulators, gantry robots), sensors (e.g., ultra-sonic sensors,force sensors), and input devices, (e.g., track ball,force-reflecting master, autonomous trajectory generators) required for waste management and environmental restoration tasks. The modular architecture allows for rapid synthesis of complex telerobotic systems. This paper introduces some sample modules and illustrates how the modules can be connected to achieve telerobotic behaviors. Examples include autonomous control, impedance control, and enhanced bilateral teleoperation.

More Details

Results of an experiment in a Zion-like geometry to investigate the effect of water on the containment basement floor on direct containment heating (DCH) in the Surtsey Test Facility: The IET-4 test

Allen, Mark S.

This document discusses the fourth experiment of the Integral Effects Test (IET-4) series which was conducted to investigate the effects of high pressure melt ejection on direct containment heating. Scale models (1:10) of the Zion reactor pressure vessel (RPV), cavity, instrument tunnel, and subcompartment structures were constructed in the Surtsey Test Facility at Sandia National Laboratories. The RPV was modeled with a melt generator that consisted of a steel pressure barrier, a cast MgO crucible, and a thin steel inner liner. The melt generator/crucible had a hemispherical bottom head containing a graphite limitor plate with a 3.5-cm exit hole to simulate the ablated hole in the RPV bottom head that would be tonned by tube ejection in a severe nuclear power plant accident. The reactor cavity model contained 3.48 kg of water with a depth of 0.9 cm that corresponded to condensate levels in the Zion plant. A 43-kg initial charge of iron oxide/aluminum/chromium thermite was used to simulate corium debris on the bottom head of the RPV. Molten thermite was ejected into the scaled reactor cavity by 6.7 MPa steam. IET-4 replicated the third experiment in the IET series (IET-3), except the Surtsey vessel contained slightly more preexisting oxygen (9.6 mol.% vs. 9.0 mol.%), and water was placed on the basement floor inside the crane wall. The cavity pressure measurements showed that a small steam explosion occurred in the cavity at about the same time as the steam explosion in IET-1. The oxygen in the Surtsey vessel in IET-4 resulted in a vigorous hydrogen bum, which caused a significant increase in the peak pressure, 262 kPa compared to 98 kPa in the IET-1 test. EET-3, with similar pre-existing oxygen concentrations, also had a large peak pressure of 246 kPa.

More Details

Efficient wiring of reconfigurable parallel processors

Greenberg, D.S.

The advent of chips which include one or more CPUS, some local memory, and rudimentary communications and routing hardware has opened a new area in computer architecture design. What is the best way to connect these chips to solve particular problems? This paper defines the efficiency of a wiring scheme for a set of communication patterns. It then gives upper and lower bounds on the best efficiency achievable. It also presents simple wiring schemes for some stencil patterns used in mesh-based discrete simulations.

More Details

Thermal diffusion processes in aqueous sodium chloride solutions

Cygan, Randall T.

The experimental results for the Soret coefficients are variable, but suggest a trend with NaCl concentration that is consistent with electrolyte solution behavior. The temperature dependence of the Soret coefficients is in approximate agreement with previous measurements obtained using other techniques. In general, the Soret coefficient values are best interpreted based on the expansion of the fluid inclusion migration fields. The high temperature values for {sigma} at 1.0 N NaCl concentration suggest an expansion of the migration field to smaller inclusion sizes, which for a single halite crystal at these conditions, approach a dimension of one micron. The corresponding fluid inclusion size for the polycrystalline material, where grain boundaries retard the migration, is approximately 10 microns. Although the Soret results obtained in the present study provide additional data for high temperature applications in nuclear waste isolation, more experimentation and new equipment design are required in order to obtain data at temperatures above 80{degree}C. The experimental approach utilized in this study is limited in that respect. The almost immeasurable nature of the thermal diffusion process for the brines as examined in the laboratory, suggests that this effect will be insignificant (outside of fluid inclusion migration) in most rock-water interactions associated with a rocksalt nuclear waste repository. Other effects, such as convective fluid transport, pressure solution, and groundwater flow, will be orders-of-magnitude more important in evaluating the critical nature of brine migration, waste canister corrosion, and the potential for leaching radioisotopes from waste repositories.

More Details

Boiler efficiency methodology for solar heat applications

Pacheco, James E.

This report contains a summary of boiler efficiency measurements which can be applied to evaluate the performance of steam-generating boilers via both the direct and indirect methods. This methodology was written to assist industries in calculating the boiler efficiency for determining the applicability and value of thermal industrial heat, as part of the efforts of the Solar Thermal Design Assistance Center (STDAC) funded by Sandia National Laboratories. Tables of combustion efficiencies are enclosed as functions of stack temperatures and the amount of carbon dioxide and carbon monoxide in the gas stream.

More Details
Results 97451–97475 of 99,299
Results 97451–97475 of 99,299