Publications

Results 97126–97150 of 99,299

Search results

Jump to search filters

Intrinsic and interfacial recombination in OMVPE- and MBE-prepared GaAs/Al{sub x}Ga{sub 1-x}As heterostructures

Hjalmarson, Harold P.

We have studied intrinsic free-carrier recombination in a variety of GaAs structures, including: OMVPE- and MBE-prepared GaAs/Al{sub x}Ga{sub 1-x}As double heterostructures, Na{sub 2}S passivated GaAs structures and bare GaAs structures. We find OMVPE prepared structures are superior to all of these other structures with 300 K lifetimes of {approximately} 2.5 {mu}s and negligible nonradiative interface and bulkrecombination, and thus are truly surface-free (S < 40 cm/s). Moreover, we observe systematic trends in optical properties versus growth conditions. Lastly, we find that the presence of free-exciton recombination in the low-temperature photoluminescence spectra is a necessary but not sufficient condition for optimal optical properties (i.e. long minority-carrier lifetimes).

More Details

Containment bellows testing under extreme loads

Spletzer, Barry L.

Sandia National Laboratories (SNL) is conducting several research programs to help develop validated methods for the prediction of the ultimate pressure capacity, at elevated temperatures, of light water reactor (LWR) containment structures. To help understand the ultimate pressure of the entire containment pressure boundary, each component must be evaluated. The containment pressure boundary consists of the containment shell and many access, piping, and electrical penetrations. The focus of the current research program is to study the ultimate behavior of flexible metal bellows that are used at piping penetrations. Bellows are commonly used at piping penetrations in steel containments; however, they have very few applications in concrete (reinforced or prestressed) containments. The purpose of piping bellows is to provide a soft connection between the containment shell and the pipe are attached while maintaining the containment pressure boundary. In this way, piping loads caused by differential movement between the piping and the containment shell are minimized. SNL is conducting a test program to determine the leaktight capacity of containment bellows when subjected to postulated severe accident conditions. If the test results indicate that containment bellows could be a possible failure mode of the containment pressure boundary, then methods will be developed to predict the deformation, pressure, and temperature conditions that would likely cause a bellows failure. Results from the test program would be used to validate the prediction methods. This paper provides a description of the use and design of bellows in containment piping penetrations, the types of possible bellows loadings during a severe accident, and an overview of the test program, including available test results at the time of writing.

More Details

Greater confinement disposal of high activity and special case wastes at the Nevada Test Site: A unified migration assessment approach

Davis, P.A.; Olague, N.E.; Johnson, V.L.; Dickman, P.T.; O'Neill, L.J.

The Department of Energy`s Nevada Field Office has disposed of a small quantity of high activity and special case wastes using Greater Confinement Disposal facilities in Area 5 of the Nevada Test Site. Because some of these wastes are transuranic radioactive wastes, the Environmental Protection Agency standards for their disposal under 40 CFR Part 191 which requires a compliance assessment. In conducting the 40 CFR Part 191 compliance assessment, review of the Greater Confinement Disposal inventory revealed potentially land disposal restricted hazardous wastes. The regulatory options for disposing of land disposal restricted wastes consist of (1) treatment and monitoring, or (2) developing a no-migration petition. Given that the waste is already buried without treatment, a no-migration petition becomes the primary option. Based on a desire to minimize costs associated with site characterization and performance assessment, a single approach has been developed for assessing compliance with 40 CFR Part 191, DOE Order 5820.2A (which regulates low-level radioactive wastes contained in Greater Confinement Disposal facilities) and developing a no-migration petition. The approach consists of common points of compliance, common time frame for analysis, and common treatment of uncertainty. The procedure calls for conservative bias of modeling assumptions, including model input parameter distributions and adverse processes and events that can occur over the regulatory time frame, coupled with a quantitative treatment of data and parameter uncertainty. This approach provides a basis for a defensible regulatory decision. In addition, the process is iterative between modeling and site characterization activities, where the need for site characterization activities is based on a quantitative definition of the most important and uncertain parameters or assumptions.

More Details

Vibration suppression by modulation of elastic modulus using shape memory alloy

Segalman, Daniel J.

The first portion of this paper proposes a method of fabricating a material whose modulus can be changed substantially through the application of a specified stimulus. The particular implementation presented here indirectly exploits the large deformation associated with shape memory alloys to achieve the desired modulation of stiffness. The next portion of this paper discusses a class of vibration problems for which such materials have a serious potential for vibration suppression. These are problems, such as the spinning up of rotating machinery, in which the excitation at any time lies within a narrow frequency band, and that band moves through the frequency spectrum in a predictable manner. Finally, an example problem is examined and the utility of this approach is discussed.

More Details

Ablation problems using a finite control volume technique

Blackwell, Bennie F.

An element based finite control volume procedure is applied to the solution of ablation problems for 2-D axisymmetric geometries. A mesh consisting of four node quadrilateral elements was used. The nodes are allowed to move in response to the surface recession rate. The computational domain is divided into a region with a structured mesh with moving nodes and a region with an unstructured mesh with stationary nodes. The mesh is costrained to move along spines associated with the original mesh. Example problems are presented for the ablation of a realistic nose tip geometry exposed to aerodynamic heating from a uniform free stream environment.

More Details

Surface diffusion: Atomistics and surface morphology (Summary of MRS Symposium B panel discussion)

Grabow, M.H.; Gilmer, G.H.; Feibelman, P.J.; Cooper, B.H.; Mo, Y.W.

The paper gives some of the highlights of a panel discussion on surface diffusion held Monday, November 30, 1992 at the Fall MRS Meeting in Boston, Massachusetts. Four invited speakers discussed computer modeling techniques and scanning tunneling microscopy experiments that have been used to provide new understanding of the atomistic processes that occur at surfaces. We present a summary of each of the invited talks, indicate other presentations on surface diffusion in this proceedings, and provide a transcript of the two discussion sessions.

More Details

Enhancements to data collection and reporting of single and multiple failure events

Whitehead, Donnie W.

During the past few years, methods have been developed for quantifying and analyzing common cause failures (CCFs). These methods have outpaced current data collection activities. This document discusses the collection and documentation of failure events at nuclear power plants with respect to these new CCFs methods. The report concentrates on the information necessary to improve the parameter estimates for both independent and dependent events in probabilistic risk assessments (PRAS) and alludes to the fact that the same information can be used to enhance other nuclear power plant activities. Several existing data bases are reviewed as to their adequacy for these new CCF methods, and areas where information is lacking, either because certain information is simply not required to be reported or because required information was simply not reported, are identified. Finally, data needs identified from recent PRAs are discussed.

More Details

Rocket-triggered lightning studies for the protection of critical assets

Morris, M.E.; Fisher, R.J.; Schnetzer, G.H.; Merewether, K.O.; Jorgenson, R.E.

Lighting protection systems (LPSs) for explosives handling and storage facilities have long been designed similarly to those will for more conventional facilities, but their overall effectiveness in controlling interior electromagnetic (EM) environments has still not been rigorously assessed. Frequent lightning-caused failures of a security system installed in earth-covered explosives storage structures prompted the U.& Army and Sandia National Laboratories to conduct a program to determine quantitatively the EM environments inside an explosives storage structure that is struck by lightning. These environments were measured directly during rocket-triggered lightning (RTL) tests in the summer of 1991 and were computed using linear finite-difference, time-domain (FDTD) EM solvers. The experimental and computational results were first compared in order to validate the code and were also used to construct bounds for interior environments corresponding to seven incident lightning flashes. The code insults were also used to develop simple circuit models for the EM field behavior-a process that insulted in a very simple and somewhat surprising physical interpretation of the structure`s response that has significant practical and economic implications for design, construction, and maintenance of such facilities.

More Details

Interface roughness: What is it and how is it measured?

Chason, E.

A panel discussion on interface roughness was held at the Fall 1992 Materials Research Society meeting. We present a of results presented by the invited speakers on the application and interpretation of X-ray reflectivity, atomic force microscopy (AFM), scanning tunneling microscopy (STM), photoluminescence and transmission electron microscopy.

More Details

The Cryogenic Fail-Safe Control System (CRYOFACS): A comprehensive approach to safety in the cryogenic workplace

Shrouf, Roger D.

A safety system has been designed and constructed to mitigate the asphyxiation and low temperature hazards presented by the distribution and usage of cryogenic liquids in work spaces at Sandia National Laboratories. After identifying common accident scenarios, the CRYOFACS (Cryogenic Fail-Safe Control System) unit was designed, employing microprocessor technology and software that can be easily modified to accommodate varying laboratory requirements. Sensors have been incorporated in the unit for the early detection of accidental releases or overflows of cryogenic liquids. The CRYOFACS design includes control (and shutdown) of the cryogen source upon error detection, and interfaces with existing oxygen monitors, in common use at Sandia Labs, to provide comprehensive protection for both personnel and property.

More Details

Results from the second performance assessment iteration for the Greater Confinement Disposal facility

Baer, M.R.

The Greater Confinement Disposal (GCD) facility was established by the Nevada office of the Department of Energy (DOE) in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with Environmental Protection Agency (EPA) regulations 40 CFR 191 must be evaluated by performance assessment calculations. We have adopted an iterative approach where performance assessment results guide site data collection which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data. The first iteration indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward recharge rate had a major influence on the results. As a result, a site characterization project was initiated to study recharge in Area 5 by use of three environmental tracers. This study resulted in the conclusion that recharge was extremely small, if not negligible. Thus, downward advection to the water table is no longer considered a viable release pathway, leaving upward liquid diffusion as the sole release pathway. This second performance assessment iteration refined the upward pathway models and parameters. The results of the performance assessment using these models still indicate that the GCD site is likely to comply with all sections of 40 CFR 191.

More Details

Chromate-free corrosion resistant conversion coatings for aluminum

Buchheit, R.G.; Stoner, G.E.

We have developed a method for generating chromate-free corrosion resistant coatings on aluminum alloys using a process procedurally similar to standard chromate conversion. These coatings provide good corrosion resistance on 6061-T6 and 1100 A1 under salt spray testing conditions. The resistance of the new coating is comparable to that of chromate conversion coatings in four point probe tests, but higher when a mercury probe technique is used. Initial tests of paint adhesion, and under paint corrosion resistance are promising. Primary advantage of this new process is that no hazardous chemicals are used or produced during the coating operation.

More Details

Characterizing transient vibrations using band limited temporal moments

Smallwood, David O.

A method is described to characterize shocks (transient time histories) in terms of the Fourier energy spectrum and the temporal moments of the shock passed through a contiguous set of bandpass filters. This method is compared for two transient time histories with the more conventional methods of shock response spectra (SRS) and a nonstationary random characteristic.

More Details

Phase separation, antiferromagnetism, and superconductivity in superconducting-superoxygenated La{sub 2-x}Sr{sub x}CuO{sub 4+{delta}}

Schirber, J.E.

La{sub 2-x}Sr{sub x}CuO{sub 4+{delta}} with x = 0.01, 0.025, 0.050, 0.10 and 0.16 and excess oxygen {delta} incorporated by high-pressure O{sub 2} anneals. These compounds were examined using time-of-flight neutron diffraction data. Various models were fit by Rietveld least-squares refinement, with the maximum amount of {delta} being only of the order of 10 standard deviations. {delta} is largest for x near 0, is zero for x = 0.10 and is intermediate for x = 0.16. Only the sample with x = 0.01 is found to phase separate distinctly into a nearly stoichiometric phase with {delta} {approx} 0 and an oxygen-rich superconducting phase as the temperature is lowered. Coincidence of phase separation and Neel temperature strongly suggests that the phase separation is driven by free energy provided by long-range antiferromagnetic ordering in the nearly stoichiometric, weakly Sr-doped La{sub 2-x}Sr{sub x}CuO{sub 4}. The excess oxygen stoichiometry shows that at low values of x, hole doping is provided primarily by the excess oxygen, and is enhanced substantially by phase separation. At larger values of x, excess oxygen is no longer incorporated, and hole doping is provided by the substitution of Sr{sup +2} for La{sup +3}.

More Details

Separate effects testing to investigate liner tearing of the 1:6-scale reinforced concrete containment building

Spletzer, Barry L.

The US Nuclear Regulatory Commission (NRC) is investigating the performance of containments subject to severe accidents. This work is being performed by Sandia National Laboratories (SNL). In 1987, a 1:6-scale Reinforced Concrete Containment (RCC) model was tested to failure. The failure mode was a liner tear. As a result, a separate effects test program has been conducted to investigate liner tearing. This paper discusses the design of test specimens and the results of the testing. The post-test examination of the 1:6-scale RCC model revealed that the large tear was not an isolated event. Other small tears in similar locations were also discovered. All tears occurred near the insert-to-liner transition which is also the region of closest stud spacing. Also, all tears propagated vertically, in response to the hoop strain. Finally, all tears were adjacent to a row of studs. The tears point to a mechanism which could involve the liner/insert transition, the liner anchorage, and the material properties. The separate effects tests investigated these effects. The program included the design of three types of specimens with each simulating some features of the 1:6-scale RCC model. The specimens were instrumented using strain gages and photoelastic materials.

More Details

Tree reconstruction from partial orders

Kannan, S.K.; Warnow, T.J.

The problem of constructing trees given a matrix of interleaf distances is motivated by applications in computational evolutionary biology and linguistics. The general problem is to find an edge-weighted tree which most closely approximates the distance matrix. Although the construction problem is easy when the tree exactly fits the distance matrix, optimization problems under all popular criteria are either known or conjectured to be NP-complete. In this paper we consider the related problem where we are given a partial order on the pairwise distances, and wish to construct (if possible) an edge-weighted tree realizing the partial order. In particular we are interested in partial orders which arise from experiments on triples of species, which determine either a linear ordering of the three pairwise distances (called Total Order Model or TOM experiments) or only the pair(s) of minimum distance apart (called Partial Order Model or POM experiments). The POM and TOM experimental model is inspired by the model proposed by Kannan, Lawler, and Warnow for constructing trees from experiments which determine the rooted topology for any triple of species. We examine issues of construction of trees and consistency of TOM and POM experiments, where the trees may either be weighted or unweighted. Using these experiments to construct unweighted trees without nodes of degree two is motivated by a similar problem studied by Winkler, called the Discrete Metric Realization problem, which he showed to be strongly NP-hard. We have the following results: Determining consistency of a set of TOM or POM experiments is NP-Complete whether the tree is weighted or constrained to be unweighted and without degree two nodes. We can construct unweighted trees without degree two nodes from TOM experiments in optimal O(n{sup 3}) time and from POM experiments in O(n{sup 4}) time.

More Details

Semiconductor ring lasers

Hohimer, J.P.; Hadley, G.R.; Vawter, G.A.; Craft, D.C.

Semiconductor ring lasers are being developed for use as direct-waveguide-coupled sources for photonic integrated circuits. This report describes the results of our research and development of this new class of diode lasers. We have fabricated and characterized semiconductor ring lasers which operate continuous-wave at room temperature with a single-frequency output of several milliwatts. Our work has led to an increased understanding of the operating behavior of these lasers and to the development of two new types of advanced devices. The interferometric ring diode laser uses a coupled-cavity structure to improve the level of single-frequency performance. And, the unidirectional ring diode laser uses an active crossover waveguide to promote lasing in a single ring direction with up to 96% of the output emitted in the preferred lasing direction.

More Details

Plasma-etching science meets technology in the MDL

Greenberg, K.E.; Miller, P.A.; Patteson, R.; Smith, B.K.

Results from fundamental investigations of low-temperature plasma systems were used to improve chamber-to-chamber reproducibility and reliability in commercial plasma-etching equipment. The fundamental studies were performed with a GEC RF Reference Cell, a laboratory research system designed to facilitate experimental and theoretical studies of plasma systems. Results and diagnostics from the Reference Cell studies were then applied to analysis and rectification of chamber-to-chamber variability on a commercial, multichamber, plasma reactor. Pertinent results were transferred to industry.

More Details

Extensions of ``Some guidelines for the mechanical design of coaxial compression pin seals``

Chambers, Robert S.

Compression seals are commonly used in electronic components. Because glass has such a low fracture toughness, tensile residual stresses must be kept low to avoid crackS. N. Burchett analyzed a variety of compression pin seals to identify mechanically optimal configurations when work hardened Alloy 52 conductor pins are sealed in a 304 stainless steel housing with a Kimble TM-9 glass insulator. Mechanical property tests on Alloy 52, have shown that the heat treatments encountered in a typical glass sealing cycle are capable of annealing the Alloy 52 pins, increasing ductility and lowering the yield strength. Since most seal analyses are routinely based on unannealed Alloy 52 properties, a limited study has been performed to determine the design impact of lowering the yield strength of the pins in a typical compression seal. Thermal residual stresses were computed in coaxial compression seals with annealed pins and the results then were used to reconstruct design guidelines following the procedures employed by Miller and Burchett. Annealing was found to significantly narrow the optimal design range (as defined by a dimensionless geometric parameter). The Miller-Burchett analyses which were based on very coarse finite element meshes and a 50 ksi yield strength fortuitously predicted an overly conservative design range that is a subset of the narrow design window prevalent when the yield strength is assumed to be 34 ksi. This may not remain true for lower yield strengths. The presence of pin wetting was shown to exacerbate the glass stress state. The time is right to develop a modern and enhanced set of design guidelines which could address new material systems, three dimensional geometries, and viscoelastic effects.

More Details

Experience in implementing a parallel file system

Wheat, S.R.

With ever increasing processor and memory speeds, new methods to overcome the ``I/O bottleneck`` need to be found. This is especially true for massively parallel computers that need to store and retrieve large amounts of data fast and reliably, to fully utilize the available processing power. We have designed and implemented a parallel file system, that distributes the work of transferring data to and from mass storage, across several I/O nodes and communication channels. The prototype parallel file system makes use of the existing single threaded file system of the Sandia/University of New Mexico Operating System (SUNMOS). SUNMOS is a joint project between Sandia National Laboratory and the University of New Mexico to create a small and efficient OS for Massively Parallel (MP) Multiple Instruction, Multiple Data (MIMD) machines. We chose file striping to interleave files across sixteen disks. By using source-routing of messages we were able to increase throughput beyond the maximum single channel bandwidth the default routing algorithm of the nCUBE 2 hypercube allows. We describe our implementation, the results of our experiments, and the influence this work has had on the design of the Performance-oriented, User-managed, Messaging Architecture (PUMA) operating system, the successor to SUNMOS.

More Details

A neural network approach to seismic phase identification

Draelos, Timothy J.

An automatic phase identification system that employs a neural network approach to classifying seismic event phases is described. Extraction of feature vectors used to distinguish the different classes is explained, and the design and training of the neural networks in the system are detailed. Criteria used to evaluate the performance of the neural network approach are provided.

More Details

Proton transport methods for satellite shield modeling

Drumm, Clifton R.

Satellite electronics may be subjected to a large fluence of protons from the Van Allen belt and from solar flares. To determine if unhardened electronics will survive a radiation environment, the total ionizing dose and displacement damage to the electronics must be determined. Several computer codes are available for modeling proton transport, ranging in complexity for a very-efficient straight-line approximation to general-geometry time-dependent Monte Carlo transport, with corresponding increase in computer run time. For most satellite applications, neutrons can be neglected in the analysis. However, neutrons may be important for modeling heavily shielded compartments for personnel and electronics.

More Details
Results 97126–97150 of 99,299
Results 97126–97150 of 99,299