Publications

Results 51–75 of 103

Search results

Jump to search filters

Evaluation of electrodialysis desalination performance of novel bioinspired and conventional ion exchange membranes with sodium chloride feed solutions

Membranes

Rempe, Susan R.; Hyder, Ahm G.; Morales, Brian A.; Cappelle, Malynda A.; Percival, Stephen P.; Small, Leo J.; Spoerke, Erik D.; Walker, W.S.

Electrodialysis (ED) desalination performance of different conventional and laboratoryscale ion exchange membranes (IEMs) has been evaluated by many researchers, but most of these studies used their own sets of experimental parameters such as feed solution compositions and concentrations, superficial velocities of the process streams (diluate, concentrate, and electrode rinse), applied electrical voltages, and types of IEMs. Thus, direct comparison of ED desalination performance of different IEMs is virtually impossible. While the use of different conventional IEMs in ED has been reported, the use of bioinspired ion exchange membrane has not been reported yet. The goal of this study was to evaluate the ED desalination performance differences between novel laboratory-scale bioinspired IEM and conventional IEMs by determining (i) limiting current density, (ii) current density, (iii) current efficiency, (iv) salinity reduction in diluate stream, (v) normalized specific energy consumption, and (vi) water flux by osmosis as a function of (a) initial concentration of NaCl feed solution (diluate and concentrate streams), (b) superficial velocity of feed solution, and (c) applied stack voltage per cell-pair of membranes. A laboratory-scale single stage batchrecycle electrodialysis experimental apparatus was assembled with five cell-pairs of IEMs with an active cross-sectional area of 7.84 cm2. In this study, seven combinations of IEMs (commercial and laboratory-made) were compared: (i) Neosepta AMX/CMX, (ii) PCA PCSA/PCSK, (iii) Fujifilm Type 1 AEM/CEM, (iv) SUEZ AR204SZRA/CR67HMR, (v) Ralex AMH-PES/CMH-PES, (vi) Neosepta AMX/Bare Polycarbonate membrane (Polycarb), and (vii) Neosepta AMX/Sandia novel bioinspired cation exchange membrane (SandiaCEM). ED desalination performance with the Sandia novel bioinspired cation exchange membrane (SandiaCEM) was found to be competitive with commercial Neosepta CMX cation exchange membrane.

More Details

Tin-based ionic chaperone phases to improve low temperature molten sodium-NaSICON interfaces

Journal of Materials Chemistry A

Gross, Martha S.; Small, Leo J.; Peretti, Amanda S.; Percival, Stephen P.; Rodriguez, Mark A.; Spoerke, Erik D.

High temperature operation of molten sodium batteries impacts cost, reliability, and lifetime, and has limited the widespread adoption of these grid-scale energy storage technologies. Poor charge transfer and high interfacial resistance between molten sodium and solid-state electrolytes, however, prevents the operation of molten sodium batteries at low temperatures. Here, in situ formation of tin-based chaperone phases on solid state NaSICON ion conductor surfaces is shown in this work to greatly improve charge transfer and lower interfacial resistance in sodium symmetric cells operated at 110 °C at current densities up to an aggressive 50 mA cm-2. It is shown that static wetting testing, as measured by the contact angle of molten sodium on NaSICON, does not accurately predict battery performance due to the dynamic formation of a chaperone NaSn phase during cycling. This work demonstrates the promise of sodium intermetallic-forming coatings for the advancement of low temperature molten sodium batteries by improved mating of sodium-NaSICON surfaces and reduced interfacial resistance.

More Details

Nanoscale thin film corrosion barriers enabled by multilayer polymer clay nanocomposites

Surface and Coatings Technology

Percival, Stephen P.; Melia, Michael A.; Alexander, Christopher L.; Nelson, Derek W.; Schindelholz, Eric J.; Spoerke, Erik D.

We describe here the immersion corrosion resistance of multilayer polymer-clay nanocomposite (PCN) barrier thin films coated on low carbon steel. Deposited using a Layer-by-Layer (LbL) self-assembly process and only a few hundred nanometers thick, the thin film polymer clay nanocomposites (PCN) exhibited excellent corrosion barrier properties, comparable to coatings that are orders of magnitude thicker. PCN barrier thin films comprising up to 60 “bilayers” of polyethyleneimine and exfoliated montmorillonite were coated onto steel coupons and immersed in high salinity water for up to 7 days to evaluate barrier film corrosion resistance. PCN film performance is shown to be influenced by the number of coated bilayers and, critically, a post-coating crosslinking treatment. Covalently crosslinking the polyethyleneimine components of the films resulted in a significant improvement in corrosion resistance. PCN films that were not crosslinked showed nearly identical electrochemical impedance compared to bare steel, failing rapidly and leading to large areas of visible corrosion. Impedance behavior of the corroding samples was analyzed with a precise model, which allowed the determination of the PCN film properties separate from the substrate and solution. The resistivity through the PCN thin films was very high, even after 7 days of immersion. Though increasing PCN thickness led to increased charge transfer resistance, chemical crosslinking most significantly increased charge transfer resistance by several orders of magnitude. The combined influences of PCN film resistivity and very high charge transfer resistances led to the outstanding corrosion barrier properties. These PCN films show promise toward a new class of low-cost highly applicable anticorrosion coatings.

More Details
Results 51–75 of 103
Results 51–75 of 103