We present the design and expected performance of a proof-of-concept 32 channel material identification system. Our system is based on the energy-dependent attenuation of fast neutrons for four elements: hydrogen, carbon, nitrogen and oxygen. We describe a new approach to obtaining a broad range of neutron energies to probe a sample, as well as our technique for reconstructing the molar densities within a sample. The system's performance as a function of time-of-flight energy resolution is explored using a Geant4-based Monte Carlo. Our results indicate that, with the expected detector response of our system, we will be able to determine the molar density of all four elements to within a 20–30% accuracy in a two hour scan time. In many cases this error is systematically low, thus the ratio between elements is more accurate. This degree of accuracy is enough to distinguish, for example, a sample of water from a sample of pure hydrogen peroxide: the ratio of oxygen to hydrogen is reconstructed to within 8±0.5% of the true value. Finally, with future algorithm development that accounts for backgrounds caused by scattering within the sample itself, the accuracy of molar densities, not ratios, may improve to the 5–10% level for a two hour scan time.
The time-correlated pulse-height (TCPH) distribution can be used to differentiate between multiplying (e.g 235U, 239Pu) and non-multiplying (e.g Am-Li, 252Cf) sources. In the past, this approach proved effective at characterizing the multiplication of alpha phase plutonium metal through a passive measurement. Recently, Sandia National Laboratories has completed a measurement campaign with its new Correlated Radiation Signature (CoRS) system involving active interrogation of highly enriched uranium (HEU) with an Am-Li source. An additional obstacle was introduced to the measurement configuration by shielding the HEU with depleted uranium (DU). Simulation results have proven Am-Li source to be a suitable interrogating source because of its relatively low-energy neutron spectrum. The TCPH distribution was successfully used to determine the presence of a multiplying medium inside DU shells. The correlation between multiplication and an empirical parameters broke down for externally driven configurations, but in all cases the presence of a multiplying source was detected.
Our previous conference report on this instrument emphasized its use for fast-neutron imaging spectroscopy. We describe here its additional measurement capabilities, namely active interrogation, time-correlated pulse-height multiplication measurements, and gamma imaging.
A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.