Publications

Results 76–99 of 99
Skip to search filters

Static and dynamic compaction of ceramic powders

International Journal of Solids and Structures

Vogler, Tracy V.; Lee, Moo Y.; Grady, D.E.

The static and dynamic compaction of ceramic powders was investigated experimentally using a high-pressure friction-compensated press to achieve static stresses of 1.6 GPa and with a novel gas gun setup to stresses of 5.9 GPa for a tungsten carbide powder. Experiments were performed in the partial compaction region to nearly full compaction. The effects of variables including initial density, particle size distribution, particle morphology, and loading path were investigated in the static experiments. Only particle morphology was found to significantly affect the compaction response. Post-test examination of the powder reveals fracture of the grains as well as breaking at particle edges. In dynamic experiments, steady structured compaction waves traveling at very low velocities were observed. The strain rate within the compaction waves was found to scale nearly linearly with the shock stress, in contrast with many fully dense materials where strain rate scales with stress to the fourth power. Similar scaling is found for data from the literature on TiO2 powder. The dynamic response of WC powder is found to be significantly stiffer than the static response, probably because deformation in the dynamic case is confined to the relatively narrow compaction wave front. Comparison of new static powder compaction results with shock data from the literature for SiO2 also reveals a stiffer dynamic response. © 2006 Elsevier Ltd. All rights reserved.

More Details

Three dimensional simulation for bayou choctaw strategic petroleum reserve (SPR)

Park, Byoung P.; Ehgartner, Brian L.; Lee, Moo Y.

Three dimensional finite element analyses were performed to evaluate the structural integrity of the caverns located at the Bayou Choctaw (BC) site which is considered a candidate for expansion. Fifteen active and nine abandoned caverns exist at BC, with a total cavern volume of some 164 MMB. A 3D model allowing control of each cavern individually was constructed because the location and depth of caverns and the date of excavation are irregular. The total cavern volume has practical interest, as this void space affects total creep closure in the BC salt mass. Operations including both cavern workover, where wellhead pressures are temporarily reduced to atmospheric, and cavern enlargement due to leaching during oil drawdowns that use water to displace the oil from the caverns, were modeled to account for as many as the five future oil drawdowns in the six SPR caverns. The impacts on cavern stability, underground creep closure, surface subsidence, infrastructure, and well integrity were quantified.

More Details

Numerical simulation evaluating the structural integrity of spr caverns in the big hill salt dome

Proceedings of the 41st U.S. Rock Mechanics Symposium - ARMA's Golden Rocks 2006 - 50 Years of Rock Mechanics

Park, B.Y.; Herrick, C.G.; Ehgartner, Brian L.; Lee, Moo Y.; Sobolik, Steven R.

Three dimensional finite element analyses were performed to evaluate the structural integrity of SPR caverns located at the Big Hill site. These state-of-the-art analyses simulate the current site configuration with the addition of five caverns to produce an expanded facility. The model simulates 19 caverns in a systematic pattern with equal spacing and uniform cavern size and geometry. Operations, including both cavern workover and cavern enlargement due to leaching, were modeled to account for as many as five future oil drawdowns. The web of salt separating the caverns was reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence, infrastructure, and well integrity were quantified. The analyses include a recently derived damage criterion obtained from laboratory testing of Big Hill salt cores. From a structural viewpoint, the caverns were found to be stable. The thick caprock at Big Hill mitigated the predicted subsidence rates and damage to surface structures is not expected to occur. © 2006, ARMA, American Rock Mechanics Association.

More Details

Preliminary study on hydrogeology in tectonically active areas

Arnold, Bill W.; Lappin, Allen R.; Gettemy, Glen L.; Meier, Diane K.; Lee, Moo Y.; Jensen, Richard P.

This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

More Details

Statistical analysis of compositional factors affecting the compressive strength of alumina-loaded epoxy (ALOX)

Lee, Moo Y.; Montgomery, Stephen M.

Detailed statistical analysis of the experimental data from testing of alumina-loaded epoxy (ALOX) composites was conducted to better understand influences of the selected compositional properties on the compressive strength of these ALOX composites. Analysis of variance (ANOVA) for different models with different sets of parameters identified the optimal statistical model as, y{sub l} = -150.71 + 29.72T{sub l} + 204.71D{sub l} + 160.93S{sub 1l} + 90.41S{sub 2l}-20.366T{sub l}S{sub 2l}-137.85D{sub l}S{sub 1l}-90.08D{sub l}S{sub 2l} where y{sub l} is the predicted compressive strength, T{sub l} is the powder type, D{sub l} is the density as the covariate for powder volume concentration, and S{sub il}(i=1,2) is the strain rate. Based on the optimal statistical model, we conclude that the compressive strength of the ALOX composite is significantly influenced by the three main factors examined: powder type, density, and strain rate. We also found that the compressive strength of the ALOX composite is significantly influenced by interactions between the powder type and the strain rate and between the powder volume concentration and the strain rate. However, the interaction between the powder type and the powder volume concentration may not significantly influence the compressive strength of the ALOX composite.

More Details

Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR)

Park, Byoung P.; Lee, Moo Y.; Ehgartner, Brian L.; Sobolik, Steven R.

3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

More Details

Phase transformation of poled "chem-prep" PZT 95/5-2Nb ceramic under quasi-static loading conditions

Lee, Moo Y.; Montgomery, Stephen M.; Hofer, John H.

Specimens of poled 'chem-prep' PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions at three temperatures of -55, 25, and 75 C and pressures up to 500 MPa. The objective of this experimental study was to obtain the electro-mechanical properties of the ceramic and the criteria of FE (Ferroelectric) to AFE (Antiferroelectric) phase transformations so that grain-scale modeling efforts can develop and test models and codes using realistic parameters. The poled ceramic undergoes anisotropic deformation during the transition from a FE to an AFE structure. The lateral strain measured parallel to the poling direction was typically 35 % greater than the strain measured perpendicular to the poling direction. The rates of increase in the phase transformation pressures per temperature changes were practically identical for both unpoled and poled PNZT HF803 specimens. We observed that the retarding effect of temperature on the kinetics of phase transformation appears to be analogous to the effect of shear stress. We also observed that the FE-to-AFE phase transformation occurs in poled ceramic when the normal compressive stress, acting perpendicular to a crystallographic plane about the polar axis, equals the hydrostatic pressure at which the transformation otherwise takes place.

More Details

Compressed air energy storage monitoring to support refrigerated mined rock cavern technology

Bauer, Stephen J.; Lee, Moo Y.

This document is the final report for the Compressed Air Energy Storage Monitoring to Support Refrigerated-Mined Rock Cavern Technology (CAES Monitoring to Support RMRCT) (DE-FC26-01NT40868) project to have been conducted by CAES Development Co., along with Sandia National Laboratories. This document provides a final report covering tasks 1.0 and subtasks 2.1, 2.2, and 2.5 of task 2.0 of the Statement of Project Objectives and constitutes the final project deliverable. The proposed work was to have provided physical measurements and analyses of large-scale rock mass response to pressure cycling. The goal was to develop proof-of-concept data for a previously developed and DOE sponsored technology (RMRCT or Refrigerated-Mined Rock Cavern Technology). In the RMRCT concept, a room and pillar mine developed in rock serves as a pressure vessel. That vessel will need to contain pressure of about 1370 psi (and cycle down to 300 psi). The measurements gathered in this study would have provided a means to determine directly rock mass response during cyclic loading on the same scale, under similar pressure conditions. The CAES project has been delayed due to national economic unrest in the energy sector.

More Details

Laboratory constitutive characterization of cellular concrete

Lee, Moo Y.; Bronowski, David R.; Hardy, Robert D.

To establish mechanical material properties of cellular concrete mixes, a series of quasi-static, compression and tension tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results from the constitutive experimental efforts. Results from the uniaxial and triaxial compression tests established failure criteria for the cellular concrete in terms of stress invariants I{sub 1} and J{sub 2}. {radical}J{sub 2} (MPa) = 297.2 - 278.7 exp{sup -0.000455 I}{sub 1}{sup (MPa)} for the 90-pcf concrete {radical}J{sub 2} (MPa) = 211.4 - 204.2 exp {sup -0.000628 I}{sub 1}{sup (MPa)} for the 60-pcf concrete

More Details

Hydrostatic, uniaxial, and triaxial compression tests on unpoled "Chem-prep" PZT 95/5-2Nb ceramic within temperature range of -55 to 75 degrees C

Lee, Moo Y.; Lee, Moo Y.; Montgomery, Stephen M.; Hofer, John H.; Zeuch, David H.

Sandia is currently developing a lead-zirconate-titanate ceramic 95/5-2Nb (or PNZT) from chemically prepared ('chem-prep') precursor powders. Previous PNZT ceramic was fabricated from the powders prepared using a 'mixed-oxide' process. The specimens of unpoled PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions within the temperature range of -55 to 75 C and pressures to 500 MPa. The objective of this experimental study was to obtain mechanical properties and phase relationships so that the grain-scale modeling effort can develop and test its models and codes using realistic parameters. The stress-strain behavior of 'chem-prep' PNZT under different loading paths was found to be similar to that of 'mixed-oxide' PNZT. The phase transformation from ferroelectric to antiferroelectric occurs in unpoled ceramic with abrupt increase in volumetric strain of about 0.7 % when the maximum compressive stress, regardless of loading paths, equals the hydrostatic pressure at which the transformation otherwise takes place. The stress-volumetric strain relationship of the ceramic undergoing a phase transformation was analyzed quantitatively using a linear regression analysis. The pressure (P{sub T1}{sup H}) required for the onset of phase transformation with respect to temperature is represented by the best-fit line, P{sub T1}{sup H} (MPa) = 227 + 0.76 T (C). We also confirmed that increasing shear stress lowers the mean stress and the volumetric strain required to trigger phase transformation. At the lower bound (-55 C) of the tested temperature range, the phase transformation is permanent and irreversible. However, at the upper bound (75 C), the phase transformation is completely reversible as the stress causing phase transformation is removed.

More Details

Shallow hydraulic fracturing measurements in Korea support tectonic and seismic indicators of regional stress

Proposed for publication in the International Journal of Rock Mechanics and Mining Sciences.

Lee, Moo Y.; Lee, Moo Y.

We have conducted five hydraulic fracturing stress measurement campaigns in Korea, involving 13 test holes ranging in depth from 30 to 250 m, at locations from North Seoul to the southern coast of the peninsula. The measurements reveal consistent crustal stress magnitudes and directions that suggest persistence throughout western and southern Korea. The maximum horizontal stress {sigma}{sub H} is oriented between ENE-WSW and E-W, in accord with plate movement and deformation, and with directions indicated by both focal mechanism solutions from earthquakes inland and offshore as well as borehole breakouts in mainland China close to its eastern coast. With respect to magnitudes, the vertical stress is the overall minimum stress at all tested locations, suggesting a thrust faulting regime within the relatively shallow depths reached by our tests. Typically, such a stress regime becomes one favoring strike-slip at greater depths, as is also indicated by the focal mechanism solutions around Korea.

More Details

Laboratory Evaluation of Damage Criteria and Creep Parameters of Tioga Dolomite and Rock Salt from Cavern Well No. 1

Lee, Moo Y.; Ehgartner, Brian L.; Ehgartner, Brian L.

A suite of laboratory triaxial compression and triaxial steady-state creep tests provide quasi-static elastic constants and damage criteria for bedded rock salt and dolomite extracted from Cavern Well No.1 of the Tioga field in northern Pennsylvania. The elastic constants, quasi-static damage criteria, and creep parameters of host rocks provides information for evaluating a proposed cavern field for gas storage near Tioga, Pennsylvania. The Young's modulus of the dolomite was determined to be 6.4 ({+-}1.0) x 10{sup 6} psi, with a Poisson's ratio of 0.26 ({+-}0.04). The elastic Young's modulus was obtained from the slope of the unloading-reloading portion of the stress-strain plots as 7.8 ({+-}0.9) x 10{sup 6} psi. The damage criterion of the dolomite based on the peak load was determined to be J{sub 2}{sup 0.5} (psi) = 3113 + 0.34 I{sub 1} (psi) where I{sub 1} and J{sub 2} are first and second invariants respectively. Using the dilation limit as a threshold level for damage, the damage criterion was conservatively estimated as J{sub 2}{sup 0.5} (psi) = 2614 + 0.30 I{sub 1} (psi). The Young's modulus of the rock salt, which will host the storage cavern, was determined to be 2.4 ({+-}0.65) x 10{sup 6} psi, with a Poisson's ratio of 0.24 ({+-}0.07). The elastic Young's modulus was determined to be 5.0 ({+-}0.46) x 10{sup 6} psi. Unlike the dolomite specimens under triaxial compression, rock salt specimens did not show shear failure with peak axial load. Instead, most specimens showed distinct dilatancy as an indication of internal damage. Based on dilation limit, the damage criterion for the rock salt was estimated as J{sub 2}{sup 0.5} (psi) = 704 + 0.17 I{sub 1} (psi). In order to determine the time dependent deformation of the rock salt, we conducted five triaxial creep tests. The creep deformation of the Tioga rock salt was modeled based on the following three-parameter power law as {var_epsilon}{sub s} = 1.2 x 10{sup -17} {sigma}{sup 4.75} exp(-6161/T), where {var_epsilon}{sub s} is the steady state strain rate in s{sup -1}, {sigma} is the applied axial stress difference in psi, and T is the temperature in Kelvin.

More Details
Results 76–99 of 99
Results 76–99 of 99