3D Heat Flux and Melt Motion Analysis of Angled Tungsten Samples on DIII-D
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Review of Scientific Instruments
The DIII-D small angle slot (SAS) divertor is designed for divertor physics studies with enhanced neutral confinement and special target geometries in a closed divertor. The closed nature of the SAS makes optical diagnostic measurements difficult, so a specially designed, multipurpose array of Langmuir probes has been implemented to study the plasma conditions in and around the slot. The probes are spaced to provide at least 2 mm resolution (shorter than the energy decay length) of the near scrape-off layer when mapped to the outer mid-plane. Due to space limitations at the bottom of the slot, a novel spring-loaded probe and tile design was developed to clamp several short rooftop probe tips and insulators to the cooled baseplate. Initial probe measurements revealed tile to tile edge shadowing, especially where magnetic field line surface angles were less than 1°. Additionally, it was found, using three Langmuir probes (at 90°, 180°, and 270°), that the strike point variation of ±5 mm radially around the torus was not well aligned with the circular slot geometry [Watkins et al., Nucl. Mater. Energy 18, 46 (2019)]. These issues were resolved by (1) designing tiles with all probes mounted near the tile center instead of near the edges and (2) aligning these new custom tiles to the measured strike point toroidal surface with a very accurate laser scanning alignment tool. Post-alignment Langmuir probe measurements and plasma behavior demonstrated close agreement at two separate toroidal locations that were 45° apart.
Abstract not provided.
Physics of Plasmas
Impurity seeding studies in the small angle slot (SAS) divertor at DIII-D have revealed a strong relationship between the detachment onset and pedestal characteristics with both target geometry and impurity species. N2 seeding in the slot has led to the first simultaneous observation of detachment on the entire suite of boundary diagnostics viewing the SAS without degradation of core confinement. SOLPS-ITER simulations with D+C+N, full cross field drifts, and n-n collisions activated are performed for the first time in DIII-D to interpret the behavior. This highlights a strong effect of divertor configuration and plasma drifts on the recycling source distribution with significant consequences on plasma flows. Flow reversal is found for both main ions and impurities affecting strongly the impurity transport and providing an explanation for the observed dependence on the strike point location of the detachment onset and impurity leakage found in the experiments. Matched discharges with either nitrogen or neon injection show that while nitrogen does not significantly affect the pedestal, neon leads to increased pedestal pressure gradients and improved pedestal stability. Little nitrogen penetrates in the core, but a significant amount of neon is found in the pedestal consistent with the different ionization potentials of the two impurities. This work demonstrates that neutral and impurity distributions in the divertor can be controlled through variations in strike point locations in a fixed baffle structure. Divertor geometry combined with impurity seeding enables mitigated divertor heat flux balancing core contamination, thus leading to enhanced divertor dissipation and improved core-edge compatibility, which are essential for ITER and for future fusion reactors.
Physical Review Letters
The structure of the edge plasma in a magnetic confinement system has a strong impact on the overall plasma performance. We uncover for the first time a magnetic-field-direction dependent density shelf, i.e., local flattening of the density radial profile near the magnetic separatrix, in high confinement plasmas with low edge collisionality in the DIII-D tokamak. The density shelf is correlated with a doubly peaked density profile near the divertor target plate, which tends to occur for operation with the ion B×â‡B drift direction away from the X-point, as currently employed for DIII-D advanced tokamak scenarios. This double-peaked divertor plasma profile is connected via the E×B drifts, arising from a strong radial electric field induced by the radial electron temperature gradient near the divertor target. The drifts lead to the reversal of the poloidal flow above the divertor target, resulting in the formation of the density shelf. The edge density shelf can be further enhanced at higher heating power, preventing large, periodic bursts of the plasma, i.e., edge-localized modes, in the edge region, consistent with ideal magnetohydrodynamics calculations.
Nuclear Fusion
UEDGE simulations highlight the role of cross-field drifts on the onset of detached conditions, and new calibrated divertor vacuum ultra violet (VUV) spectroscopy is used to challenge the predictions of radiative constituents in these simulations. UEDGE simulations for DIII-D H-mode plasmas with the open divertor with the ion ∇B-drift towards the X-point show a bifurcated onset of the low field side (LFS) divertor detachment, consistent with experimentally observed step-like detachment onset (Jaervinen A.E. et al 2018 Phys. Rev. Lett. 121 075001). The divertor plasma in the simulations exhibits hysteresis in upstream separatrix density between attached and detached solution branches. Reducing the drift magnitude by a factor of 3 eliminates the step-like detachment onset in the simulations, confirming the strong role of drifts in the bifurcated detachment onset. When measured local plasma densities and temperatures are within proximity of predicted values in the simulations, there is no shortfall of the local emission of the dominant resonant radiating lines. However, the simulations systematically predict a factor of two lower total integrated radiated power than measured by the bolometer with the difference lost through radial heat flow out of the computational domain. Even though there is no shortfall in the emission of the dominant lines, a shortfall of total radiated power can be caused by underpredicted spatial extent of the radiation front, indicating a potential upstream or divertor transport physics origin for the radiation shortfall, or shortfall of radiated power in the spectrum between the dominant lines. In addition to the underpredicted spatial extent, in detached conditions, the simulations overpredict the peak radiation and dominant carbon lines near the X-point, which can be alleviated by manually increasing divertor diffusivity in the simulations, highlighting the ad hoc cross-field transport as one of the key limitations of the predictive capability of these divertor fluid codes.
Physics of Plasmas
Comparison between an open divertor and a more-closed divertor in DIII-D demonstrates detachment up to 40% lower pedestal density (n e, ped) in the closed divertor due to a combination of decreased fueling of the pedestal and increased dissipation in the scrape off layer (SOL) in the closed divertor, both resulting from increased neutral trapping in the divertor. Predicting whether the relationship between divertor closure and detachment will hold for an opaque SOL, in which the contribution of ionizing neutrals to fueling the pedestal is lessened, requires separating out different mechanisms contributing to the density difference at detachment. A series of experiments on DIII-D characterizes matched discharges using various divertor configurations to isolate the effects of divertor closure. These experiments show detachment up to 25% lower n e, sep in the closed divertor than in the open divertor, supported by simulations showing increased neutral trapping, and hence, increased dissipation, in the closed divertor. A difference in n e, ped / n e, sep is also seen: for matched n e, sep, the closed divertor has up to 20% lower n e, ped, consistent with modeling showing a smaller ionization fraction inside the separatrix in this case. Understanding how these pieces fit together will help in the development of predictive models of pedestal density and detached divertors compatible with a high performance core.
Physics of Plasmas
An MHD mode with a frequency of <10 kHz has been identified near the inner strike point from various diagnostics, i.e., divertor Langmuir probes, magnetics sensors, and interferometers, but does not appear in the upstream and core diagnostics. This MHD mode is associated with magnetic oscillations of ≳5 G, has a long wavelength in the toroidal direction with toroidal mode number n = 1, but is localized in a narrow radial region of a few cm. The mode appears when the outer strike point remains attached and the inner strike point nearly detaches, grows with increasing density, and eventually weakens and vanishes as the outer strike point detaches. This mode results in particle flux with an order of magnitude higher than the background plasmas near the inner strike point. The mode characteristics are consistent with the Current-Convective-Instability theory prediction. Initial simulations based on experimental input have found oscillations with similar frequencies but weaker amplitude.
Physica Scripta
Experiments with the lower divertor of DIII-D during the Metal Rings Campaign (MRC) show that the fraction F of atomic D in the total recycling flux is material-dependent and varies through the ELM cycle, which may affect divertor fueling. Between ELMs, F C ∼ 10% and F W ∼ 40%, consistent with expectations if all atomic recycling is due to reflections. During ELMs, FC increases to 50% and F W to 60%. In contrast, the total D recycling coefficient including atoms and molecules R stays close to unity near the strike point where the surface is saturated with D. During ELMs, R can deviate from unity, increasing during high energy ELM-ion deposition (net D release) and decreasing at the end of the ELM which leads to ability of the target to trap the ELM-deposited D. The increase of R > 1 in response to an increase in ion impact energy E i has been studied with small divertor target samples using Divertor Materials Evaluation System (DiMES). An electrostatic bias was applied to DiMES to change E i by 90 eV. On all studied materials including C, Mo, uncoated and W-coated TZM (>99% Mo, Ti, and Zr alloy), W, and W fuzz, an increase of E i transiently increased the D yield (and R) by ∼10%. On C there was also an increase in the molecular D2 yield, probably due to ion-induced D2 desorption. Despite the measured increase in F on W compared to C, attached H-mode shots with OSP on W during MRC did not demonstrate a higher pedestal density. About 8% increase in the edge density could be seen only in attached L-mode scenarios. The difference can be explained by higher D trapping in the divertor and lower divertor fueling efficiency in H-versus L-mode.
Nuclear Materials and Energy
One of the main advantages of using tungsten (W) as a plasma facing material (PFM) is its low uptake and retention of tritium. However, in high purity (ITER grade) W, hydrogenic retention increases significantly with neutron-induced displacement damage in the W lattice. This experiment examines an alternative W grade PFM, ultra-fine grain (UFG) W, to compare its retention properties with ITER grade W after 12 MeV Si ion displacement damage up to 0.6 dpa (displacements per atom.) Following exposure to plasma in the DIII-D divertor, D retention was then assessed with Nuclear Reaction Analysis (NRA) depth profiling up to 3.5 µm and thermal desorption spectrometry (TDS). Undamaged specimens were also included in our test matrix for comparison. For all samples, D release peaks were observed during TDS at approximately 200 °C and 750 °C. For the ITER-grade W specimens, the intensity of the 750 °C release peak was more pronounced for specimens that had been pre-damaged.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physica Scripta
An experimental study of migration of tungsten in the DIII-D divertor is described, in which the outer strike point of L-mode plasmas was positioned on a toroidal ring of tungsten-coated metal inserts. Net deposition of tungsten on the divertor just outside the strike point was measured on graphite samples exposed to various plasma durations using the divertor materials evaluation system. Tungsten coverage, measured by Rutherford backscattering spectroscopy (RBS), was found to be low and nearly independent of both radius and exposure time closer to the strike point, whereas farther from the strike point the W coverage was much larger and increased with exposure time. Depth profiles from RBS show this was due to accumulation of thicker mixedmaterial deposits farther from the strike point where the plasma temperature is lower. These results are consistent with a low near-surface steady-state coverage on graphite undergoing net erosion, and continuing accumulation in regions of net deposition. This experiment provides data needed to validate, and further improve computational simulations of erosion and deposition of material on plasma-facing components and transport of impurities in magnetic fusion devices. Such simulations are underway and will be reported later.
Physica Scripta
An experiment was conducted in DIII-D to compare gross tungsten (W) erosion on samples exposed to outer strike point (OSP) sweeps in L-mode plasmas for three conditions. These included two phases of resonant magnetic perturbations (RMPs), and a set with no perturbations. Upon RMP application, lobe structures indicative of strike point splitting of the OSP were evident in divertor camera data and on Langmuir probes. Gross W erosion flux, GW, inferred spectroscopically using the S/XB method applied to the 400.9 nm W-I line, was generally in the range ΓW/ΓD +,⊥ = 2 × 10-4 referenced to incident deuterium ion flux ΓD+,⊥, and was increased in the RMP cases by no more than 30% of the level observed in unperturbed discharges. A large reduction in gross erosion (50%) was observed in the private flux region at the W sample for one specific toroidal phase of the RMP field.
Abstract not provided.
Abstract not provided.
Nuclear Fusion
It is important to develop a predictive capability for the tungsten source rate near the strike points during H-mode operation in ITER and beyond. H-mode deuterium plasma exposures were performed on W-coated graphite and molybdenum substrates in the DIII-D divertor using DiMES. The W-I 400.9 nm spectral line was monitored by fast filtered diagnostics cross calibrated via a high-resolution spectrometer to resolve inter-ELM W erosion. The effective ionization/photon (S/XB) was calibrated using a unique method developed on DIII-D based on surface analysis. Inferred S/XB values agree with an existing empirical scaling at low electron density (n e) but diverge at higher densities, consistent with recent ADAS atomic physics modeling results. Edge modeling of the inter-ELM phase is conducted via OEDGE utilizing the new capability for charge-state resolved carbon impurity fluxes. ERO modeling is performed with the calculated main ion and impurity plasma background from OEDGE. ERO results demonstrate the importance a mixed-material surface model in the interpretation of W sourcing measurements. It is demonstrated that measured inter-ELM W erosion rates can be well explained by C→W sputtering only if a realistic mixed material model is incorporated.
Abstract not provided.
Abstract not provided.