Publications

Results 26–50 of 51

Search results

Jump to search filters

G3P3 Phase 3 Project Execution Plan. Issue 1

Sment, Jeremy N.I.; Ho, Clifford K.

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories New Mexico (SNL/NM) developed this Project Execution Plan (PEP) to document its process for executing, monitoring, controlling and closing-out Phase 3 of the Gen 3 Particle Pilot Plant G3P3. This plan serves as a resource for stakeholders who wish to be knowledgeable of project objectives and how they will be accomplished. The plan is intended to be used by the development partners, principal investigator, and the federal project director. Project objectives are derived from the mission needs statement, and an integrated project team assists in development of the PEP. This plan is a living document and will be updated throughout the project to describe current and future processes and procedures. The scope of the PEP covers: Cost, schedule, and scope Project reporting Staffing plan Quality assurance plan Environment, safety, security, and health This document is a tailored approach for the Facilities Management and Operations Center (FMOC) to meet the project management principles of DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets , and DOE G 413.3-15, DOE Guide for Project Execution Plans. This document will elaborate on content as knowledge of the project is gained or refined.

More Details

Testing and simulations of spatial and temporal temperature variations in a particle-based thermal energy storage bin

ASME 2020 14th International Conference on Energy Sustainability, ES 2020

Sment, Jeremy N.I.; Martinez, Mario J.; Albrecht, Kevin; Ho, Clifford K.

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories is conducting research on a Generation 3 Particle Pilot Plant (G3P3) that uses falling sand-like particles as the heat transfer medium. The system will include a thermal energy storage (TES) bin with a capacity of 6 MWht¬ requiring ~120,000 kg of flowing particles. Testing and modeling were conducted to develop a validated modeling tool to understand temporal and spatial temperature distributions within the storage bin as it charges and discharges. Flow and energy transport in funnel-flow was modeled using volume averaged conservation equations coupled with level set interface tracking equations that prescribe the dynamic geometry of particle flow within the storage bin. A thin layer of particles on top of the particle bed was allowed to flow toward the center and into the flow channel above the outlet. Model results were validated using particle discharge temperatures taken from thermocouples mounted throughout a small steel bin. The model was then used to predict heat loss during charging, storing, and discharging operational modes at the G3P3 scale. Comparative results from the modeling and testing of the small bin indicate that the model captures many of the salient features of the transient particle outlet temperature over time.

More Details

Testing and simulations of spatial and temporal temperature variations in a particle-based thermal energy storage bin

ASME 2020 14th International Conference on Energy Sustainability Es 2020

Sment, Jeremy N.I.; Martinez, Mario J.; Albrecht, Kevin; Ho, Clifford K.

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories is conducting research on a Generation 3 Particle Pilot Plant (G3P3) that uses falling sand-like particles as the heat transfer medium. The system will include a thermal energy storage (TES) bin with a capacity of 6 MWht¬ requiring ~120,000 kg of flowing particles. Testing and modeling were conducted to develop a validated modeling tool to understand temporal and spatial temperature distributions within the storage bin as it charges and discharges. Flow and energy transport in funnel-flow was modeled using volume averaged conservation equations coupled with level set interface tracking equations that prescribe the dynamic geometry of particle flow within the storage bin. A thin layer of particles on top of the particle bed was allowed to flow toward the center and into the flow channel above the outlet. Model results were validated using particle discharge temperatures taken from thermocouples mounted throughout a small steel bin. The model was then used to predict heat loss during charging, storing, and discharging operational modes at the G3P3 scale. Comparative results from the modeling and testing of the small bin indicate that the model captures many of the salient features of the transient particle outlet temperature over time.

More Details
Results 26–50 of 51
Results 26–50 of 51