Investigating Machine Learning Based X-Ray Computed Tomography Reconstruction Methods to Enhance the Accuracy of CT Scans
Development of new materials and predictive capabilities of component performance hinges on the ability to accurately digitize "as-built" geometries. X-ray computed tomography (CT) offers a non-destructive method of capturing these details but current methodologies are unable to produce the required fidelity for critical component certification. This project focused on discovering the limitations of existing CT reconstruction algorithms and exploring machine learning (ML) methodologies to overcome these limitations. We found that existing CT reconstruction methods are insufficient for Sandia's critical component certification process and that ML algorithms are a viable path forward to improving the quality of CT images.