Publications

Results 101–141 of 141

Search results

Jump to search filters

Numerical analyses of locomotive impacts on a spent fuel truck cask and trailer

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Ammerman, Douglas; Stevens, Dave; Barsotti, Matt

During the transportation of spent nuclear fuel by truck, the possibility exists that a train could run into the spent fuel cask at a grade crossing. Sandia National Laboratories has conducted a numerical study to assess the possibility of cask breach or material release in the event of a high-speed, broadside locomotive collision. A numerical approach has the advantage over conducting a physical test as was done in the 1970s [1] in that varying parameters can be examined. For example, one of the criticisms of the 1970s test was the height of the cask. In the test, the centerline of the cask was above the main frame-rails of the locomotive. In this study the position of the cask with respect to the locomotive was varied. The response of the cask and trailer in different collision scenarios was modeled numerically with LS-DYNA [2]. The simulations were performed as a collaborative endeavor between Sandia National Laboratories (SNL), Applied Research Associates, Inc. (ARA) and Foster-Miller, Inc (FMI). ARA developed the GA-4 Spent Fuel Cask and Cask Transporter models described in this report. These models were then combined with two existing FMI heavy freight locomotive finite element models to create the overall simulation scenarios. The modeling effort, results, and conclusions are presented in this paper. Copyright © 2005 by ASME.

More Details

Accident Conditions versus Regulatory Test for NRC-Approved UF6 Packages

Mills, G.S.; Ammerman, Douglas; Lopez, Carlos

The Nuclear Regulatory Commission (NRC) approves new package designs for shipping fissile quantities of UF{sub 6}. Currently there are three packages approved by the NRC for domestic shipments of fissile quantities of UF{sub 6}: NCI-21PF-1; UX-30; and ESP30X. For approval by the NRC, packages must be subjected to a sequence of physical tests to simulate transportation accident conditions as described in 10 CFR Part 71. The primary objective of this project was to relate the conditions experienced by these packages in the tests described in 10 CFR Part 71 to conditions potentially encountered in actual accidents and to estimate the probabilities of such accidents. Comparison of the effects of actual accident conditions to 10 CFR Part 71 tests was achieved by means of computer modeling of structural effects on the packages due to impacts with actual surfaces, and thermal effects resulting from test and other fire scenarios. In addition, the likelihood of encountering bodies of water or sufficient rainfall to cause complete or partial immersion during transport over representative truck routes was assessed. Modeled effects, and their associated probabilities, were combined with existing event-tree data, plus accident rates and other characteristics gathered from representative routes, to derive generalized probabilities of encountering accident conditions comparable to the 10 CFR Part 71 conditions. This analysis suggests that the regulatory conditions are unlikely to be exceeded in real accidents, i.e. the likelihood of UF{sub 6} being dispersed as a result of accident impact or fire is small. Moreover, given that an accident has occurred, exposure to water by fire-fighting, heavy rain or submersion in a body of water is even less probable by factors ranging from 0.5 to 8E-6.

More Details

Use of inelastic analysis in cask design

Ammerman, Douglas; Breivik, Nicole L.

In this paper, the advantages and disadvantages of inelastic analysis are discussed. Example calculations and designs showing the implications and significance of factors affecting inelastic analysis are given. From the results described in this paper it can be seen that inelastic analysis provides an improved method for the design of casks. It can also be seen that additional code and standards work is needed to give designers guidance in the use of inelastic analysis. Development of these codes and standards is an area where there is a definite need for additional work. The authors hope that this paper will help to define the areas where that need is most acute.

More Details

Analysis in support of storage of residues in the pipe overpack container

Ammerman, Douglas

The disposition of the large backlog of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plans call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55 gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. The potential for damage to this container during onsite storage in unhardened structures for several hypothetical accident scenarios has been addressed using finite element calculations. This report will describe the initial conditions and assumptions for these analyses and the predicted response of the container.

More Details

Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety

Ammerman, Douglas

Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

More Details

Testing in support of transportation of residues in the pipe overpack container

Ammerman, Douglas

The disposition of the large back-log of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plants call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55-gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. The tests described here were performed to qualify the Pipe Overpack Container as a waste container for shipment in the TRUPACT-II. Using a more robust container will assure the fissile materials in each container can not be mixed with the fissile material from the other containers and will provide criticality control. This will allow an increase in the payload of the TRUPACT-II from 325 fissile gram equivalents to 2,800 fissile gram equivalents.

More Details

Testing in support of on-site storage of residues in the Pipe Overpack Container

Ammerman, Douglas

The disposition of the large back-log of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plans call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55-gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. It is desirable to use this same waste packaging for interim on-site storage in non-hardened buildings. To meet the safety concerns for this storage the Pipe Overpack Container has been subjected to a series of tests at Sandia National Laboratories in Albuquerque, New Mexico. In addition to the tests required to qualify the Pipe Overpack Container as a waste container for shipment in the TRUPACT-II several tests were performed solely for the purpose of qualifying the container for interim storage. This report will describe these tests and the packages response to the tests. 12 figs., 3 tabs.

More Details

A comparison of methods for evaluating structure during ship collisions

Ammerman, Douglas

A comparison is provided of the results of various methods for evaluating structure during a ship-to-ship collision. The baseline vessel utilized in the analyses is a 67.4 meter in length displacement hull struck by an identical vessel traveling at speeds ranging from 10 to 30 knots. The structural response of the struck vessel and motion of both the struck and striking vessels are assessed by finite element analysis. These same results are then compared to predictions utilizing the {open_quotes}Tanker Structural Analysis for Minor Collisions{close_quotes} (TSAMC) Method, the Minorsky Method, the Haywood Collision Process, and comparison to full-scale tests. Consideration is given to the nature of structural deformation, absorbed energy, penetration, rigid body motion, and virtual mass affecting the hydrodynamic response. Insights are provided with regard to the calibration of the finite element model which was achievable through utilizing the more empirical analyses and the extent to which the finite element analysis is able to simulate the entire collision event. 7 refs., 8 figs., 4 tabs.

More Details

Benchmarking of finite element codes for radioactive material transportation packages

Ammerman, Douglas

The increased power of computers and computer codes makes the use of nonlinear dynamic finite element analyses attractive for use as a tool used in the design and certification of radioactive material transportation packages. For this analysis technique to be acceptable it must be demonstrated. The technique has the ability to accurately capture the response of the packages to accident environments required by the regulations. The best method of demonstrating this ability is via a series of benchmark analyses. In this paper three benchmark problems involving significant inelastic deformations will be discussed. One of the problems has been analyzed using many different finite element codes. The other two problems involve comparison of finite element calculations to the results form physical tests. The ability of the finite element method to accurately capture the response in these three problems indicates the method should be acceptable for radioactive material transportation package design and certification.

More Details

Use of inelastic analysis to determine the response of packages to puncture accidents

Ammerman, Douglas

The accurate analytical determination of the response of radioactive material transportation packages to the hypothetical puncture accident requires inelastic analysis techniques. Use of this improved analysis method recudes the reliance on empirical and approximate methods to determine the safety for puncture accidents. This paper will discuss how inelastic analysis techniques can be used to determine the stresses, strains and deformations resulting from puncture accidents for thin skin materials with different backing materials. A method will be discussed to assure safety for all of these types of packages.

More Details

Structural analysis in support of the waterborne transport of radioactive materials

Ammerman, Douglas

The safety of the transportation of radioactive materials by road and rail has been well studied and documented. However, the safety of waterborne transportation has received much less attention. Recent highly visible waterborne transportation campaigns have led to DOE and IAEA to focus attention on the safety of this transportation mode. In response, Sandia National Laboratories is conducting a program to establish a method to determine the safety of these shipments. As part of that program the mechanics involved in ship-to-ship collisions are being evaluated to determine the loadings imparted to radioactive material transportation packages during these collisions. This paper will report on the results of these evaluations.

More Details

An assessment of simplified methods to determine damage from ship-to-ship collisions

Ammerman, Douglas

Sandia National Laboratories (SNL) is studying the safety of shipping, radioactive materials (RAM) by sea, the SeaRAM project (McConnell, et al. 1995), which is sponsored by the US Department of Energy (DOE). The project is concerned with the potential effects of ship collisions and fires on onboard RAM packages. Existing methodologies are being assessed to determine their adequacy to predict the effect of ship collisions and fires on RAM packages and to estimate whether or not a given accident might lead to a release of radioactivity. The eventual goal is to develop a set of validated methods, which have been checked by comparison with test data and/or detailed finite element analyses, for predicting the consequences of ship collisions and fires. These methods could then be used to provide input for overall risk assessments of RAM sea transport. The emphasis of this paper is on methods for predicting- effects of ship collisions.

More Details

Analysis of a ship-to-ship collision

Ammerman, Douglas

Sandia National Laboratories is involved in a safety assessment for the shipment of radioactive material by sea. One part of this study is investigation of the consequences of ship-to-ship collisions. This paper describes two sets of finite element analyses performed to assess the structural response of a small freighter and the loading imparted to radioactive material (RAM) packages during several postulated collision scenarios with another ship. The first series of analyses was performed to evaluate the amount of penetration of the freighter hull by a striking ship of various masses and initial velocities. Although these analyses included a representation of a single RAM package, the package was not impacted during the collision so forces on the package could not be computed. Therefore, a second series of analyses incorporating a representation of a row of seven packages was performed to ensure direct package impact by the striking ship. Average forces on a package were evaluated for several initial velocities and masses of the striking ship. In addition to. providing insight to ship and package response during a few postulated ship collisions scenarios, these analyses will be used to benchmark simpler ship collision models used in probabilistic risk assessment analyses.

More Details
Results 101–141 of 141
Results 101–141 of 141