Publications

5 Results

Search results

Jump to search filters

Parasitic Modulation of Microwave Signals by a Hypersonic Plasma Layer

IEEE Transactions on Plasma Science

Roberds, Nicholas R.; Young, Matthew W.; Miller, Nathan M.; Logemann, Caleb L.; Statom, Tony S.; Wagnild, Ross M.

During hypersonic flight, compressional and viscous heating of the air can form a plasma layer which encases the aircraft. If the boundary layer becomes turbulent, then the electron density fluctuations can effect a parasitic modulation in microwave signals transmitted through the plasma. We developed an approach for studying the interaction of microwave signals with a turbulent, hypersonic plasma layer. The approach affords a great deal of flexibility in both the plasma layer model and the antenna configuration. We then analyzed a situation in which microwaves, transmitted from a rectangular aperture antenna, propagate through a turbulent plasma layer to a distant receiver. We characterized the first- and second-order statistics of the computed parasitic modulation and quantified the depolarization of the signal. The amplitude fluctuations are lognormally distributed at low frequencies and Rice-distributed at high frequencies. Fluctuations in the copolarized phase and amplitude of the far-field signal are strongly anticorrelated. We used a multioutput Gaussian process (MOGP) to model these quantities. The efficacy of the MOGP model is demonstrated by recovering the time evolution of the copolarized phase given the copolarized amplitude and occasional measurements of the phase.

More Details
5 Results
5 Results