Here, we introduce a novel chance-constrained stochastic unit commitment model to address uncertainty in renewables' production uncertainty in power systems operation. For most thermal generators,underlying technical constraints that are universally treated as "hard" by deterministic unit commitment models are in fact based on engineering judgments, such that system operators can periodically request operation outside these limits in non-nominal situations, e.g., to ensure reliability. We incorporate this practical consideration into a chance-constrained stochastic unit commitment model, specifically by in-frequently allowing minor deviations from the minimum and maximum thermal generator power output levels. We demonstrate that an extensive form of our model is computationally tractable for medium-sized power systems given modest numbers of scenarios for renewables' production. We show that the model is able to potentially save significant annual production costs by allowing infrequent and controlled violation of the traditionally hard bounds imposed on thermal generator production limits. Finally, we conduct a sensitivity analysis of optimal solutions to our model under two restricted regimes and observe similar qualitative results.
We extend and improve recent results given by Singh and Watson on using classical bounds on the union of sets in a chance-constrained optimization problem. Specifically, we revisit the so-called Dawson and Sankoff bound that provided one of the best approximations of a chance constraint in the previous analysis. Next, we show that our work is a generalization of the previous work, and in fact the inequality employed previously is a very relaxed approximation with assumptions that do not generally hold. Computational results demonstrate on average over a 43% improvement in the bounds. As a byproduct, we provide an exact reformulation of the floor function in optimization models.
The historic city of Saint Petersburg is full of memorial plaques—ballet dancers, literary giants, composers, war heroes, and even mathematicians. Here, if you go to the metro station Petrogradskaya, cross the bridge over the tiny Karpovka River, and reach ulitsa Professora Popova—Professor Popov Street—then almost surely you are going to one of two destinations. First, perhaps you are going to the Saint Petersburg Electrotechnical University, colloquially known as LETI. Second, you may be going for a stroll in the botanical garden of the V. L. Komarov Institute of the Russian Academy of Sciences.
We consider a joint-chance constraint (JCC) as a union of sets, and approximate this union using bounds from classical probability theory. When these bounds are used in an optimization model constrained by the JCC, we obtain corresponding upper and lower bounds on the optimal objective function value. We compare the strength of these bounds against each other under two different sampling schemes, and observe that a larger correlation between the uncertainties tends to result in more computationally challenging optimization models. We also observe the same set of inequalities to provide the tightest upper and lower bounds in our computational experiments.
In this short article, we summarize a step-by-step methodology to forecast power output from a photovoltaic solar generator using hourly auto-regressive moving average (ARMA) models. We illustrate how to build an ARMA model, to use statistical tests to validate it, and construct hourly samples. The resulting model inherits nice properties for embedding it into more sophisticated operation and planning models, while at the same time showing relatively good accuracy. Additionally, it represents a good forecasting tool for sample generation for stochastic energy optimization models.
Here, we develop a stochastic optimization model for scheduling a hybrid solar-battery storage system. Solar power in excess of the promise can be used to charge the battery, while power short of the promise is met by discharging the battery. We ensure reliable operations by using a joint chance constraint. Models with a few hundred scenarios are relatively tractable; for larger models, we demonstrate how a Lagrangian relaxation scheme provides improved results. To further accelerate the Lagrangian scheme, we embed the progressive hedging algorithm within the subgradient iterations of the Lagrangian relaxation. Lastly, we investigate several enhancements of the progressive hedging algorithm, and find bundling of scenarios results in the best bounds.
Stochastic optimization deals with making highly reliable decisions under uncertainty. Chance constraints are a crucial tool of stochastic optimization to develop mathematical optimization models; they form the backbone of many important national security data science applications. These include critical infrastructure resiliency, cyber security, power system operations, and disaster relief management. However, existing algorithms to solve chance-constrained optimization models are severely limited by problem size and structure. In this investigative study, we (i) develop new algorithms to approximate chance-constrained optimization models, (ii) demonstrate the application of chance-constraints to a national security problem, and (iii) investigate related stochastic optimization problems. We believe our work will pave way for new research is stochastic optimization as well as secure national infrastructures against unforeseen attacks.