Bishop, S.R., Armijo, K.M., Debusschere, B., McDaniel, A.H., Sugar, J.D., Witman, M.D., Ginley, D., Lany, S., Ma, Z., Zakutayev, A., Ogitsu, T., Wood, B., & Ding, D. (2024). HydroGEN: Solar Thermochemical Hydrogen Production [Conference Poster]. 10.2172/2564001
Publications
Search results
Jump to search filtersBishop, S.R., Armijo, K.M., Debusschere, B., McDaniel, A.H., Sugar, J.D., Witman, M.D., Ginley, D., Lany, S., Ma, Z., Zakutayev, A., Ogitsu, T., Wood, B., & Ding, D. (2024). HydroGEN: Solar Thermochemical Hydrogen (STCH) Water Splitting [Poster]. 10.2172/2563874
Sargsyan, K., Debusschere, B., & Eldred, M. (2024). Surrogate-Accelerated Parameter Optimization for the Quasi-Biennial Oscillation [Conference Presentation]. 10.2172/2540415
Curry, C.J., Sargsyan, K., Safta, C., & Debusschere, B. (2024). The UQTk C++/Python Toolkit for Uncertainty Quantification: Overview and Applications [Conference Presentation]. 10.2172/2540447
Sargsyan, K., Debusschere, B., & Eldred, M. (2024). Surrogate-based calibration for the quasi-biennial oscillation [Conference Poster]. 10.2172/2540427
Debusschere, B., Curry, C.J., Seidl, D.T., Chang, K.W., & Mariner, P. (2023). Machine Learning Surrogates for Fuel Degradation Processes in Nuclear Waste Repository Simulations [Conference Presentation]. 10.2172/2430768
Debusschere, B., Curry, C.J., Harvey, J.A., Seidl, D.T., Chang, K.W., & Mariner, P. (2023). Machine Learning Surrogates for Time Dependent Fuel Degradation Processes in Nuclear Waste Repository Simulations [Conference Presentation]. 10.2172/2431917
Debusschere, B., Seidl, D.T., Berg, T.M., Chang, K.W., Leone, R.C., Swiler, L.P., & Mariner, P. (2023). Machine Learning Surrogates of a Fuel Matrix Degradation Process Model for Performance Assessment of a Nuclear Waste Repository. Nuclear Technology, 209(9), pp. 1295-1318. 10.1080/00295450.2023.2197666
Debusschere, B., & Benedict, J. (2022). Surrogate Models for Improving Atmospheric Modeling [Conference Presentation]. 10.2172/2432246
Debusschere, B., Seidl, D.T., Berg, T.M., Chang, K.W., Leone, R.C., Swiler, L.P., & Mariner, P. (2022). Machine Learning Surrogate Process Models for Efficient Performance Assessment of a Nuclear Waste Repository [Conference Presentation]. 10.2172/2006027
Mariner, P., Debusschere, B., Fukuyama, D.E., Harvey, J.A., Laforce, T.C., Leone, R.C., Foulk, J.W., Swiler, L.P., & Taconi, A.M. (2022). GDSA Framework Development and Process Model Integration FY2022. 10.2172/1893995
Bennett, C., Xiao, T.P., Liu, S., Humphrey, L., Incorvia, J.A., Debusschere, B., Ries, D., & Agarwal, S. (2022). Probabilistic Nanomagnetic Memories for Uncertain and Robust Machine Learning. 10.2172/1891190
Thorpe, J.E., Swiler, L.P., Hanson, S.T., Cruz, G.J., Tarman, T.D., Rollins, T., & Debusschere, B. (2022). Verification of Cyber Emulation Experiments Through Virtual Machine and Host Metrics [Conference Presentation]. ACM International Conference Proceeding Series. 10.2172/2004219
Thorpe, J.E., Swiler, L.P., Tarman, T.D., Hanson, S.T., Cruz, G.J., Debusschere, B., & Rollins, T. (2022). Verification of Cyber Emulation Experiments Through Virtual Machine and Host Metrics [Conference Paper]. https://www.osti.gov/biblio/2003842
Pinar, A., Tarman, T.D., Swiler, L.P., Gearhart, J.L., Hart, D., Vugrin, E., Arguello, B., Geraci, G., Debusschere, B., Hanson, S.T., Outkin, A.V., Thorpe, J.E., Hart, W.E., Sahakian, M.A., Gabert, K.G., Glatter, C., Johnson, E.S., & Punla-Green, S. (2022). Uncertainty Quantification within SECURE LDRD [Presentation]. https://www.osti.gov/biblio/2003628
Boll, L., Johnston, K., Sargsyan, K., Safta, C., & Debusschere, B. (2022). The UQTk C++/Python Toolkit for Uncertainty Quantification: Overview and Applications [Conference Presentation]. 10.2172/2002312
Swiler, L.P., Portone, T., Mariner, P., Leone, R., Brooks, D.M., Seidl, D.T., Debusschere, B., & Berg, T. (2022). Use of a machine learning model for a constitutive chemistry model within a groundwater flow and transport application modeling nuclear fuel degradation in a waste repository [Conference Presentation]. 10.2172/2002228
Thorpe, J.E., Swiler, L.P., Hanson, S.T., Cruz, G.J., Tarman, T.D., Rollins, T., & Debusschere, B. (2022). WiP: Verification of Cyber Emulation Experiments Through Virtual Machine and Host Metrics [Conference Paper]. https://www.osti.gov/biblio/2002055
Thorpe, J.E., Swiler, L.P., Hanson, S.T., Cruz, G.J., Tarman, T.D., Rollins, T., & Debusschere, B. (2022). WiP: Verification of Cyber Emulation Experiments Through Virtual Machine and Host Metrics [Conference Presentation]. 10.2172/2002078
Liu, S., Xiao, T.P., Agarwal, S., Debusschere, B., Bennett, C., & Incorvia, J.A. (2022). Domain wall-magnetic tunnel junction synapses for Bayesian neural networks [Presentation]. https://www.osti.gov/biblio/2001939
Debusschere, B., Seidl, D.T., Berg, T.M., Chang, K.W., Leone, R.C., Swiler, L.P., & Mariner, P. (2022). Machine Learning Surrogate Process Models for Efficient Performance Assessment of a Nuclear Waste Repository [Conference Paper]. Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85181567561&origin=inward
Debusschere, B., Seidl, D.T., Berg, T.M., Chang, K.W., Leone, R.C., Swiler, L.P., & Mariner, P. (2022). Machine Learning Surrogate Process Models for Efficient Performance Assessment of a Nuclear Waste Repository [Conference Paper]. Proceedings of the International High Level Radioactive Waste Management Conference Ihlrwm 2022 Embedded with the 2022 Ans Winter Meeting. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85181567561&origin=inward
Sargsyan, K., Safta, C., Boll, L., Johnston, K., Khalil, M., Chowdhary, K., Rai, P., Casey, T., Zeng, X., & Debusschere, B. (2021). UQTk Version 3.1.2 User Manual. 10.2172/1855040
Mariner, P., Berg, T.M., Debusschere, B., Eckert, A., Harvey, J.A., Laforce, T.C., Leone, R.C., Mills, M.M., Nole, M.A., Park, H.D., Perry, F.V., Seidl, D.T., Swiler, L.P., & Chang, K.W. (2021). GDSA Framework Development and Process Model Integration FY2021. 10.2172/1825056
Pinar, A., Tarman, T.D., Swiler, L.P., Gearhart, J.L., Hart, D., Vugrin, E., Cruz, G.J., Arguello, B., Geraci, G., Debusschere, B., Hanson, S.T., Outkin, A.V., Thorpe, J.E., Hart, W.E., Sahakian, M.A., Gabert, K.G., Glatter, C., Johnson, E.S., & Punla-Green, S. (2021). Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) (Final Report). 10.2172/1821322
Pinar, A., Tarman, T.D., Swiler, L.P., Gearhart, J.L., Hart, D., Vugrin, E., Cruz, G.J., Arguello, B., Geraci, G., Debusschere, B., Hanson, S.T., Outkin, A.V., Thorpe, J.E., Hart, W.E., Sahakian, M.A., Gabert, K.G., Glatter, C., Johnson, E.S., & Punla-Green, A.S. (2021). Science & Engineering of Cyber Security by Uncertainty Quantification and Rigorous Experimentation (SECURE) HANDBOOK. 10.2172/1820527
Geraci, G., Swiler, L.P., & Debusschere, B. (2021). Multifidelity UQ sampling for Stochastic Simulations [Conference Presentation]. 10.2172/1889573
Boll, L., Johnston, K., McDaniel, A.H., Stechel, E., & Debusschere, B. (2021). Inference of Hydrogen RedOx Reactions Models using Bayesian Compressive Sensing [Conference Presentation]. 10.2172/1891955
Berg, T.M., Mariner, P., Debusschere, B., Seidl, D.T., Leone, R.C., & Chang, K.W. (2021). Machine Learning Surrogates for the Fuel Matrix Degradation Model [Presentation]. https://www.osti.gov/biblio/1869760
Sargsyan, K., Safta, C., Johnston, K., Khalil, M., Chowdhary, K., Rai, P., Casey, T., Boll, L., Zeng, X., & Debusschere, B. (2021). UQTk Version 3.1.1 User Manual. 10.2172/1777090
Berg, T.M., Chang, K.W., Leone, R.C., Seidl, D.T., Mariner, P., & Debusschere, B. (2021). Surrogate Modeling of Spent Fuel Degradation for Repository Performance Assessment [Conference Presentation]. 10.2172/1854307
Johnston, K., Debusschere, B., & Stechel, E. (2021). Bayesian Model Selection for Thermodynamic Models of Redox Active Metal Oxides [Conference Presentation]. 10.2172/1853871
Debusschere, B., Geraci, G., Jakeman, J.D., Safta, C., & Swiler, L.P. (2021). Polynomial Chaos Expansions for Discrete Random Variables in Cyber Security Emulytics Experiments [Conference Presentation]. 10.2172/1847628
Geraci, G., Crussell, J., Swiler, L.P., & Debusschere, B. (2021). Exploration of multifidelity UQ sampling strategies for computer network applications. International Journal for Uncertainty Quantification, 11(1), pp. 55-91. 10.1615/Int.J.UncertaintyQuantification.2021033774
Mariner, P., Nole, M.A., Basurto, E., Berg, T.M., Chang, K.W., Debusschere, B., Eckert, A., Ebeida, M., Gross, M., Hammond, G., Harvey, J.A., Jordan, S.H., Kuhlman, K.L., Laforce, T.C., Leone, R.C., McLendon, W., Mills, M.M., Park, H.D., Foulk, J.W., … Swiler, L.P. (2020). Advances in GDSA Framework Development and Process Model Integration. 10.2172/1671380
Mariner, P., Berg, T.M., Chang, K.W., Debusschere, B., Leone, R.C., & Seidl, D.T. (2020). Surrogate Model Development of Spent Fuel Degradation for Repository Performance Assessment. 10.2172/1673178
Johnston, K., Boll, L., Sargsyan, K., Safta, C., & Debusschere, B. (2020). UQTk A C++/Python Toolkit for Uncertainty Quantification: Overview and Applications [Presentation]. https://www.osti.gov/biblio/1820270
Safta, C., Ray, J., Foulk, J.W., Catanach, T.A., Chowdhary, K., Debusschere, B., Galvan, E., Geraci, G., Khalil, M., & Portone, T. (2020). Characterization of Partially Observed Epidemics - Application to COVID-19. 10.2172/1763554
Sargsyan, K., Safta, C., Johnston, K., Khalil, M., Chowdhary, K., Rai, P., Casey, T., Zeng, X., & Debusschere, B. (2020). UQTk User Manual (V.3.1.0). 10.2172/1605051
Mariner, P., Debusschere, B., Hammond, G.E., Seidl, D.T., Laura, S., & Vo, J. (2019). Surrogate Modeling of Spatially Heterogeneous Source Terms for Probabilistic Assessment of Repository Performance [Conference Poster]. https://www.osti.gov/biblio/1763614
Mariner, P., Debusschere, B., Jerden, J., Seidl, D.T., Swiler, L.P., & Vo, J. (2019). Lessons Learned in the Development of Source Term Surrogate Models for Repository Performance Assessment [Conference Poster]. https://www.osti.gov/biblio/1643084
Swiler, L.P., Geraci, G., Debusschere, B., & Crussell, J. (2019). Uncertainty Quantification in Cyber Emulation [Conference Poster]. https://www.osti.gov/biblio/1642954
Mariner, P., Connolly, L.A., Cunningham, L., Debusschere, B., Dobson, D.C., Frederick, J.M., Hammond, G.E., Jordan, S.H., Laforce, T.C., Nole, M.A., Park, H.D., Foulk, J.W., Rogers, R., Seidl, D.T., Sevougian, S.D., Stein, E., Swift, P., Swiler, L.P., Vo, J., & Wallace, M. (2019). Progress in Deep Geologic Disposal Safety Assessment in the U.S. since 2010. 10.2172/1570094
Casey, T., & Debusschere, B. (2019). Analysis of Neural Network Combustion Surrogate Models. 10.2172/1569154
Casey, T., Debusschere, B., Eldred, M., Geraci, G., Ghanem, R., Jakeman, J.D., Marzouk, Y., Najm, H.N., Safta, C., & Sargsyan, K. (2019). FASTMath: UQ Algorithms [Conference Poster]. https://www.osti.gov/biblio/1641088
Carpenter, J.H., Robinson, A.C., & Debusschere, B. (2019). Verification of Uncertainty Quantification\\for Equation of State Table [Conference Poster]. https://www.osti.gov/biblio/1640804
Mariner, P., Seidl, D.T., Swiler, L.P., Debusschere, B., Vo, J., Jerden, J., & Frederick, J.M. (2019). Surrogate Modeling of Fuel Dissolution [Presentation]. https://www.osti.gov/biblio/1648825
Geraci, G., Swiler, L.P., Crussell, J., & Debusschere, B. (2019). EXPLORATION OF MULTIFIDELITY APPROACHES FOR UNCERTAINTY QUANTIFICATION IN NETWORK APPLICATIONS [Conference Poster]. 10.7712/120219.6352.18797
Geraci, G., Swiler, L.P., Crussell, J., & Debusschere, B. (2019). Exploration of multifidelity UQ strategies for network applications [Presentation]. https://www.osti.gov/biblio/1644472
Swiler, L.P., Debusschere, B., Geraci, G., & Crussell, J. (2019). SECURE Uncertainty Quantification Thrust [Presentation]. https://www.osti.gov/biblio/1644470
Mariner, P., Swiler, L.P., Seidl, D.T., Debusschere, B., Vo, J., & Frederick, J.M. (2019). High Fidelity Surrogate Modeling of Fuel Dissolution for Probabilistic Assessment of Repository Performance [Conference Poster]. https://www.osti.gov/biblio/1639277
Debusschere, B., Sargsyan, K., & Safta, C. (2019). UQTk A Flexible Python/C++ Toolkit for Uncertainty Quantification [Conference Poster]. https://www.osti.gov/biblio/1602639
Geraci, G., Swiler, L.P., Crussell, J., & Debusschere, B. (2019). Exploration of multifidelity approaches for uncertainty quantification in network applications [Conference Poster]. Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering, UNCECOMP 2019. 10.7712/120219.6352.18797
Mariner, P., Swiler, L.P., Seidl, D.T., Debusschere, B., Vo, J., & Frederick, J.M. (2019). High fidelity surrogate modeling of fuel dissolution for probabilistic assessment of repository performance [Conference Poster]. International High-Level Radioactive Waste Management 2019, IHLRWM 2019. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85067129626&origin=inward
Debusschere, B. (2018). Acknowledging Variability in Scientific Computing [Conference Poster]. https://www.osti.gov/biblio/1576179
Rohlig, K., Plischke, E., Becker, D., Stein, E., Govaerts, J., Debusschere, B., Koskinen, L., Kupiainen, P., Leigh, C., Mariner, P., Nummi, O., Pastina, B., Sevougian, S.D., Spiessl, S., Swiler, L.P., Weetjens, E., & Zeitler, T. (2018). Sensitivity Analysis in Performance Assessment: Towards a Joint Approach [Conference Poster]. https://www.osti.gov/biblio/1806880
Rohlig, K., Plischke, E., Becker, D., Stein, E., Govaerts, J., Debusschere, B., Koskinen, L., Kupiainen, P., Leigh, C., Mariner, P., Nummi, O., Pastina, B., Sevougian, S.D., Spiessl, S., Swiler, L.P., Weetjens, E., & Zeitler, T. (2018). Sensitivity Analysis in Performance Assessment: Towards a Joint Approach [Conference Poster]. https://www.osti.gov/biblio/1568977
Debusschere, B., Sargsyan, K., & Parekh, O.D. (2018). Quantum Annealing Approaches for Building Sparse Surrogate Models in Uncertainty Quantification [Conference Poster]. https://www.osti.gov/biblio/1806634
Debusschere, B., Sargsyan, K., Safta, C., Rai, P., & Chowdhary, K. (2018). UQTk: A Flexible Python/C++ Toolkit for Uncertainty Quantification [Conference Poster]. https://www.osti.gov/biblio/1510846
Najm, H.N., Debusschere, B., Sparks, N., Sargsyan, K., Huan, X., Oefelein, J., Vane, Z., Eldred, M., Geraci, G., Knio, O., Sraj, I., Scovazzi, G., Colomes, O., Marzouk, Y., Zahm, O., Menhorn, F., Ghanem, R., & Tsilifis, P. (2018). Uncertainty Quantification in LES Computations of Turbulent Multiphase Combustion in a Scramjet Engine ? ScramjetUQ ? [Conference Poster]. https://www.osti.gov/biblio/1572447
Debusschere, B., Safta, C., Sargsyan, K., & Chowdhary, K. (2018). UQTk: A C++/Python Uncertainty Quantification Toolkit [Presentation]. https://www.osti.gov/biblio/1497545
Debusschere, B., Templeton, J.A., Safta, C., Sargsyan, K., Pinar, A., & Najm, H.N. (2018). Predictive Fidelity of Machine Learning Methods Applied to Scientific Simulations [Conference Poster]. https://www.osti.gov/biblio/1512381
Debusschere, B., Templeton, J.A., Safta, C., Sargsyan, K., Pinar, A., & Najm, H.N. (2017). Predictive Fidelity of Machine Learning Methods Applied to Scientific Simulations [Conference Poster]. https://www.osti.gov/biblio/1513665
Sargsyan, K., Safta, C., Chowdhary, K., Castorena, S., de Bord, S., & Debusschere, B. (2017). UQTk Version 3.0.4 User Manual. 10.2172/1813904
Debusschere, B., Rizzi, F., Foulk, J.W., Sargsyan, K., Safta, C., Najm, H.N., Knio, O., Mycek, P., Contreras, A., & le Olivier, M. (2017). Probabilistic Approach to Enable Extreme-Scale Simulations under Uncertainty and System Faults [Conference Poster]. https://www.osti.gov/biblio/1470926
Najm, H.N., Debusschere, B., Safta, C., Sargsyan, K., Huan, X., Oefelein, J., Vane, Z., Eldred, M., Geraci, G., Knio, O., Sraj, I., Scovazzi, G., Colomes, O., Marzouk, Y., Zahm, O., Menhorn, F., Ghanem, R., & Tsilifis, P. (2017). Uncertainty Quantification in LES Computations of Turbulent Multiphase Combustion in a Scramjet Engine [Conference Poster]. https://www.osti.gov/biblio/1574094
Debusschere, B., Sadler, L.E., Antoun, B.R., Templeton, J.A., Kolda, T.G., & May, E. (2017). Improved Equity Diversity and Inclusion to Sustain an Effective Applied Mathematics Workforce [Conference Poster]. https://www.osti.gov/biblio/1466495
Debusschere, B., Pinar, A., Sargsyan, K., Templeton, J.A., & Najm, H.N. (2017). Predictive Fidelity Interpretability and Resilience of Machine Learning Methods Applied to Scientific Simulations [Conference Poster]. https://www.osti.gov/biblio/1508933
Debusschere, B., Safta, C., Sargsyan, K., & Chowdhary, K. (2017). Polynomial Chaos Based Uncertainty Quantification [Conference Poster]. https://www.osti.gov/biblio/1463445
Debusschere, B., Safta, C., Sargsyan, K., & Chowdhary, K. (2017). Polynomial Chaos Based Uncertainty Quantification [Conference Poster]. https://www.osti.gov/biblio/1513464
Debusschere, B. (2017). Intrusive polynomial chaos methods for forward uncertainty propagation. Handbook of Uncertainty Quantification. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85034776867&origin=inward
Rizzi, F., Foulk, J.W., Cook, B., Dahlgren, K., Sargsyan, K., Mycek, P., Lemaitre, O., Knio, O., & Debusschere, B. (2017). Scaling and Energy Analysis for a Resilient ULFM-Based PDE Solver [Conference Poster]. https://www.osti.gov/biblio/1476821
Foulk, J.W., Rizzi, F., Cook, B., Dahlgren, K., Sargsyan, K., Mycek, P., le Maitre, O., Knio, O., & Debusschere, B. (2017). A Resilient ULFM-based PDE Solver: Performance Scaling and Energy Analysis [Conference Poster]. 10.1109/ScalA.2016.010
Foulk, J.W., Rizzi, F., Sargsyan, K., Dahlgren, K., Debusschere, B., Cook, B., Mycek, P., le Maitre, O., & Knio, O. (2017). Performance Scaling Variability and Energy Analysis for a Resilient ULFM-based PDE Solver [Presentation]. 10.1109/ScalA.2016.010
Debusschere, B. (2017). Building a Partial Differential Equations Solver that is Resilient to Soft and Hard Faults [Presentation]. https://www.osti.gov/biblio/1458031
Debusschere, B. (2017). Bayesian Calibration: An introductory tutorial [Presentation]. https://www.osti.gov/biblio/1524281
Carpenter, J.H., Robinson, A.C., & Debusschere, B. (2017). Incorporating Data Uncertainty into Equation of State Tables [Conference Poster]. https://www.osti.gov/biblio/1458122
Sargsyan, K., Safta, C., Chowdhary, K., Castorena, S., de Bord, S., & Debusschere, B. (2017). UQTk Version 3.0.3 User Manual. 10.2172/1367452
Rizzi, F., Foulk, J.W., Sargsyan, K., Mycek, P., Contreras, A., Safta, C., le Maitre, O., Knio, O., & Debusschere, B. (2017). Partial Differential Equations Solver Resilient to Soft and Hard Faults [Conference Poster]. https://www.osti.gov/biblio/1424869
Debusschere, B. (2017). Uncertainty Quantification Toolkit [Presentation]. https://www.osti.gov/biblio/1458261
Sargsyan, K., Safta, C., Najm, H.N., Debusschere, B., Ricciuto, D., & Thornton, P. (2016). Weighted Iterative Bayesian Compressive Sensing (WIBCS) for High Dimensional Polynomial Surrogate Construction [Conference Poster]. https://www.osti.gov/biblio/1576186
Najm, H.N., Debusschere, B., Safta, C., Sargsyan, K., Huan, X., Oefelein, J., Lacaze, G., Vane, Z.P., Eldred, M., Geraci, G., Knio, O., Sraj, I., Scovazzi, G., Colomes, O., Marzouk, Y., Zahm, O., Menhorn, F., Ghanem, R., & Tsilifis, P. (2016). Uncertainty Quantification in LES Computations of Turbulent Multiphase Combustion in a Scramjet Engine ? ScramjetUQ ? [Conference Poster]. https://www.osti.gov/biblio/1420843
Rizzi, F., Foulk, J.W., Cook, B., Sargsyan, K., Mycek, P., le Maitre, O., Knio, O., Dahlgren, K., & Debusschere, B. (2016). Performance Scaling Variability and Energy Analysis for a Resilient ULFM-based PDE Solver [Conference Poster]. https://www.osti.gov/biblio/1408949
Najm, H.N., Debusschere, B., Safta, C., Sargsyan, K., Huan, X., Oefelein, J., Lacaze, G., Vane, Z.P., Eldred, M., Geraci, G., Knio, O., Sraj, I., Scovazzi, G., Colomes, O., Marzouk, Y., Zahm, O., Augustin, F., Menhorn, F., Ghanem, R., & Tsilifis, P. (2016). Uncertainty Quantification in LES Computations of Turbulent Multiphase Combustion in a Scramjet Engine [Conference Poster]. https://www.osti.gov/biblio/1397105
Sargsyan, K., Safta, C., Chowdhary, K., Castorena, S., de Bord, S., & Debusschere, B. (2016). UQTk (V. 3.0) User Manual. 10.2172/1562399
Carpenter, J.H., Debusschere, B., & Robinson, A.C. (2016). Integrated Material Models for Equation of State and Transport Properties for Aluminum Supporting Uncertainty Quantification [Presentation]. https://www.osti.gov/biblio/1527265
Castorena, S.M., & Debusschere, B. (2016). Why Are Dual Pane Windows Better? [Presentation]. https://www.osti.gov/biblio/1373065
Dahlgren, K.M., Rizzi, F., Foulk, J.W., & Debusschere, B. (2016). Rexsss Parallel Distributed PDE Solver Sensitivity Analysis [Presentation]. https://www.osti.gov/biblio/1373063
Dahlgren, K.M., Rizzi, F., Foulk, J.W., & Debusschere, B. (2016). Rexsss Parallel Distributed PDE Solver Sensitivity Analysis [Presentation]. https://www.osti.gov/biblio/1373062
Carpenter, J.H., Robinson, A.C., Debusschere, B., & Wills, A.E. (2016). Accounting for Data Uncertainty in Making and Using an EOS [Presentation]. https://www.osti.gov/biblio/1369601
Rizzi, F., Foulk, J.W., Sargsyan, K., Mycek, P., Safta, C., le Maitre, O., Knio, O., & Debusschere, B. (2016). ULFM-MPI Implementation of a Resilient Task-Based Partial Differential Equations Preconditioner [Conference Poster]. https://doi.org/10.1145/2909428.2909429
Rizzi, F., Foulk, J.W., Sargsyan, K., Mycek, P., Safta, C., le Maitre, O., Knio, O., & Debusschere, B. (2016). ULFM-MPI Implementation of a Resilient Task-Based Partial Differential Equations Preconditioner [Poster]. 10.2172/1561476
Foulk, J.W., Rizzi, F., Sargsyan, K., Dahlgren, K., Mycek, P., Safta, C., le Maitre, O., Knio, O., & Debusschere, B. (2016). Scalability of Partial Differential Equations Preconditioner Resilient to Soft and Hard Faults [Conference Poster]. https://doi.org/10.1007/978-3-319-41321-1_24
Foulk, J.W., Rizzi, F., Sargsyan, K., Dahlgren, K., Mycek, P., Safta, C., le Maitre, O., Knio, O., & Debusschere, B. (2016). Scalability of Partial Differential Equations Preconditioner Resilient to Soft and Hard Faults [Poster]. 10.2172/1561477
Rizzi, F., Foulk, J.W., Sargsyan, K., Mycek, P., Safta, C., le Maitre, O., Knio, O., & Debusschere, B. (2016). ULFM-MPI Implementation of a Resilient Task-Based Partial Differential Equations Preconditioner [Conference Poster]. https://doi.org/10.1145/2909428.2909429
Foulk, J.W., Rizzi, F., Sargsyan, K., Mycek, P., Safta, C., Lemaitre, O., Knio, O., & Debusschere, B. (2016). ULFM-MPI Implementation of a Resilient Task-Based Preconditioner for 2D Uncertain Elliptic PDEs [Conference Poster]. https://www.osti.gov/biblio/1365075
Debusschere, B., Sargsyan, K., Safta, C., & Chowdhary, K. (2016). UQTk: A C++/Python Toolkit for Uncertainty Quantification [Conference Poster]. https://www.osti.gov/biblio/1530503
Najm, H.N., Debusschere, B., Safta, C., Sargsyan, K., Oefelein, J., Lacaze, G., Eldred, M., Knio, O., Scovazzi, G., Marzouk, Y., & Ghanem, R. (2016). Uncertainty Quantification in LES Computations of Turbulent Multiphase Combustion in a Scramjet Engine [Conference Poster]. https://www.osti.gov/biblio/1530652
Chowdhary, K., & Debusschere, B. (2016). Sensitivity of cloud fraction using Bayesian compressed sensing [Conference Poster]. https://www.osti.gov/biblio/1364806
Rizzi, F., Foulk, J.W., Sargsyan, K., Safta, C., Mycek, P., le Maitre, O., Knio, O., & Debusschere, B. (2016). Interplay of Resilience and Energy Consumption for a Task-Based Partial Differential Equations Preconditioner [Conference Poster]. https://www.osti.gov/biblio/1346895